

A Post-editing Interface for Immediate Adaptation in SMT

Patrick Simianer[†], Sariya Karimova^{†*}, Stefan Riezler^{†‡}

Department of Computational Linguistics † & IWR ‡ , Heidelberg University, Germany * Kazan Federal University, Russia

Background & Motivation

User-adaptation in post-editing is **CRUCIAL**:

- 1. To overcome **domain shifts** between training data and translated materials
- 2. To prevent **frustrations** related to post-editing
- 3. To boost **efficiency** of translators and (possibly) quality

BUT:

Most adaptation approaches rely on inprecise automatic alignment methods

- \rightarrow We present an interface to collect **user-generated phrase-alignments**, which are then used in an adaptive SMT engine
- → Our approach is evaluated in a **user study**

Repetitiveness in Patent Translation

WO 2007000372 A1: Sheathed element glow plug

- A <u>sheathed element glow plug</u> (1) is to be placed inside a chamber (3) of an <u>internal combustion engine</u>.
- The <u>sheathed element glow plug</u> (1) comprises <u>heating body</u> (2) that has a <u>glow tube</u> (6) connected to a housing (4). . . .

WO 2007031371 A1: Sheathed element glow plug

- A <u>sheathed element glow plug</u> (1) serves for arrangement in a chamber of an internal combustion engine.
- The sheathed element glow plug comprises a heating body ...

sheathed element glow $plug_0$ \rightarrow Glühkerze

Learn:

 $a_0 \to eine \mid is_2$ to be placed₃ $X_1 \to wird X_1$ eingebaut \mid a chamber₅ $\to eine$ Kammer \mid of₆ $a_7 \to eines$ combustion engine₈ \to Verbrennungsmotors

Weight Adaptation

- Pairwise ranking updates to weigh many sparse features
- Per coordinate learning
 rates used to prevent too
 harsh changes

Learn: Ø

User Study

Subjects

19 students, 13 prospective translators, 6 CS students, 4 different mother tongues

Data

Titles and abstracts of patent documents, filtered by length, clustered by similarity

Environment

Controlled environment in a computer pool, 90 minute sessions

Machine translation

Hierarchical phrase-based system built from title/abstract training data, good baseline translation results

Task

Post-edit about 500 words from English into German, each task is shared by two subjects

Results

LMEM analysis. Estimated differences in the response variables contrasting non-adaptive to adaptive systems along with associated p-values, if $p \leq 0.05\,$

Conclusions

- 1. Novel graphical interface with phrase-alignments for a new form of interactive post-editing
- 2. Alignment can be used for adaptation of the translation model
- 3. User study shows significant reductions in manual effort and slight speed improvement
- M. Denkowski. 2015. Machine Translation for Human Translators. Ph.D. thesis, Carnegie Mellon University.
- P. Simianer, S. Riezler, and C. Dyer. 2012. Joint feature selection in distributed stochastic learning for large-scale discriminative training in SMT. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.
- S. Green, J. Chuang, J. Heer, and C. D. Manning. 2014. Predictive translation memory: A mixed-initiative system for human language translation. In ACM User Interface Software & Technology.