
Preference Learning for Machine Translation

Dissertation of Patrick Simianer

Heidelberg University, Germany

Abstract

Automatic translation of natural language is still (as of 2017) a long-standing but
unmet promise. While advancing at a fast rate, the underlying methods are still
far from actually being able to reliably capture syntax or semantics of arbitrary
utterances of natural language, way off transporting the encoded meaning into
a second language. However, it is possible to build useful translating machines
when the target domain is well known and the machine is able to learn and adapt
efficiently and promptly from new inputs. This is possible thanks to efficient and
effective machine learning methods which can be applied to automatic translation.

In this work we present and evaluate methods for three distinct scenarios: a) We
develop algorithms that can learn from very large amounts of data by exploiting
pairwise preferences deőned over competing translations, which can be used to make
a machine translation system robust to arbitrary texts from varied sources, but
also enable it to learn effectively to adapt to new domains of data; b) We describe a
method that is able to efficiently learn external models which adhere to őne-grained
preferences that are extracted from a constricted selection of translated material, e.g.
for adapting to users or groups of users in a computer-aided translation scenario; c)
We develop methods for two machine translation paradigms, neural- and traditional
statistical machine translation, to directly adapt to user-deőned preferences in an
interactive post-editing scenario, learning precisely adapted machine translation
systems. In all of these settings, we show that machine translation can be made
signiőcantly more useful by careful optimization via preference learning.

i

Acknowledgments

“The difference between the right word and the almost right word is the difference
between lightning and a lightning bug.ž

[Mark Twain]

First of all I would like to express my gratitude to Stefan Riezler, for introducing
me to (statistical) machine translation Ð which I found to be a worthwhile subject
to spend one’s professional life with Ð and for encouraging me to write both
Master’s and Ph.D. theses on just this topic. I would also like to thank Marcello
Federico for hosting an internship whose results turned out to be part of this work,
as well as for agreeing to be my second advisor.

During my time at Heidelberg University I was glad to spend time with a number
of great people Ð Carolin, Duy, Felix, Gesa, Julia, Julian, Katharina, Kathrin,
Laura, Markus, Mayumi, Samuel, Sandra, Sariya, Sascha, and Shigehiko, amongst
others.

Luckily, I was also able to spend some time abroad, where I enjoyed great
hospitality and was excellently advised Ð in Cambridge, UK by Adrià de Gispert,
Gonzalo Iglesias and Bill Byrne, and in Trento, Italy by Marcello Federico and
Nicola Bertoldi, with support from the MateCat project.

Of course, my family and friends also played a large role in the completion of
this thesis, always giving me strength and support when I needed it the most.

But, above all, I would like to thank my wife Eugenia for her love and support,
without none of this would have been possible.

This work has been supported in part by the German Research Foundation (DFG) under the

grants Cross-language Learning-to-Rank for Patent Retrieval, and Grounding Statistical Machine

Translation in Perception and Action (RI-2221/2-1).

ii

Contents

1 Introduction 1
1.1 Preference Learning for Machine Translation 3
1.2 Outline . 5
1.3 Research Contributions . 7

1.3.1 Previous Publications . 8

2 Background 9
2.1 A Very Short History of MT & CAT 11
2.2 Statistical Machine Translation . 12

2.2.1 Statistical Formulation of Translation 12
2.2.2 Word-Based Models and Statistical Word Alignment 16
2.2.3 Phrase-Based Model . 20
2.2.4 Digression: Language Modeling 22
2.2.5 Hierarchical Phrase-Based Model 23
2.2.6 Neural Machine Translation 27

2.3 Evaluation of (Machine) Translation 31
2.3.1 Human Evaluation . 32
2.3.2 Automatic Evaluation . 33

2.3.2.1 Edit Distance-Based Evaluation 33
2.3.2.2 Precision-Based Evaluation 34
2.3.2.3 Correlations with Human Judgments 36
2.3.2.4 System Comparison & Signiőcance Testing 37

2.4 Linguistic Materials for Machine Translation 38
2.4.1 Data Domains & Characteristics 39

2.4.1.1 News-Style Text 39
2.4.1.2 Patents . 40
2.4.1.3 Legal Texts . 41
2.4.1.4 Manuals . 41
2.4.1.5 Spoken Language 42

2.5 Optimization in Machine Translation 42
2.5.1 Digression: Discriminative Training in Statistical Machine

Translation . 43
2.5.2 Direct Error Minimization 44

2.5.2.1 Minimum Error Rate Training 44
2.5.3 Structured Prediction . 46

2.5.3.1 Margin-Infused Relaxed Algorithm 47

iii

Contents

2.6 Preference Learning & Ranking . 49
2.6.1 Learning to Rank . 51

2.6.1.1 Formalization of Information Retrieval 52
2.6.1.2 Ranking Measures 53
2.6.1.3 Loss Functions and Learning 55

3 Learning Preferences from Static Reference Translations 64
3.1 Learning from Static References . 64
3.2 Learning to Rank for Statistical Machine Translation 65

3.2.1 Pairwise Ranking for Statistical Machine Translation 66
3.3 Baseline Algorithm . 69
3.4 Experimental Setup . 71

3.4.1 Data . 71
3.4.2 Machine Translation Systems 74

3.5 Model Features . 75
3.5.1 Dense Feature Set . 75
3.5.2 Sparse Feature Set . 77
3.5.3 Experiments with Features 78

3.6 Setups for Tuning Methods . 78
3.6.1 Minimum Error Rate Training 81
3.6.2 Margin-infused Relaxed Algorithm 81
3.6.3 Online Discriminative Training with Pairwise Ranking . . . 82

3.7 Experiments with Synthetic Data 83
3.8 Gold-Standard . 84
3.9 Generating Training Data . 88

3.9.1 Evaluation . 96
3.10 Parallelization . 97

3.10.1 Feature Selection, Regularization & Multi-Task Learning . 100
3.10.1.1 Multi-Task Learning 102
3.10.1.2 Asynchronous Parallelization 106

3.10.2 Evaluation . 109
3.10.3 Perceptron Variants . 111

3.10.3.1 Evaluation . 113
3.11 Training on the Bitext . 115

3.11.1 Evaluation . 117
3.11.2 Efficient Implementation . 120

3.12 Further Experiments . 121
3.12.1 Comparison to Mira . 121
3.12.2 Multi-Task Learning by Regularization 122

3.12.2.1 Experimental Setup 122
3.12.2.2 Evaluation . 123
3.12.2.3 Japanese-to-English Patent Translation 127

iv

Contents

3.12.3 Spoken Language Translation 129
3.12.3.1 German-to-English 129
3.12.3.2 Russian-to-English 133
3.12.3.3 English-to-Russian 133

3.13 Experimental Summary . 134

4 Learning Preferences from Post-Edits 139
4.1 Computer-Aided Translation . 140
4.2 Post-Editing . 142
4.3 Learning from Post-Edits . 144
4.4 Online Adaptation . 145

4.4.1 Online Learning Protocol 146
4.4.2 Related Works . 146
4.4.3 Simulated Post-Editing . 148

4.5 Online Adaptation by Reranking 149
4.5.1 Reranking . 149

4.5.1.1 Reranking with the Structured Perceptron 150
4.6 Experiments . 152

4.6.1 IT Data . 154
4.6.2 Legal Data . 157
4.6.3 Patent Data . 160
4.6.4 Analysis . 162

4.6.4.1 Repetition Rate 163

5 Learning Preferences from Human Interaction 165
5.1 Interactive Machine Translation . 165
5.2 Immediate Adaptation from Post-Edits 166

5.2.1 Graphical Post-Editing Interface for Immediate Adaptation 168
5.2.2 Phrase Alignment for Hierarchical Derivations 170

5.3 Adaptation . 171
5.3.1 Translation Model Adaptation from User Edits 171
5.3.2 Parameter Adaptation . 172
5.3.3 Language Model Adaptation 172
5.3.4 Adaptation Scheme . 173

5.4 Implementation of an Online Adaptive Post-Editing System 173
5.4.1 Client Interface . 175
5.4.2 Logging . 175
5.4.3 Efficiency . 175

5.5 Evaluation in Computer-Aided Translation 178
5.5.1 Measuring Speed . 178
5.5.2 Measuring Effort . 179
5.5.3 Measuring Quality . 180

v

Contents

5.6 User Studies . 180
5.6.1 User Studies in Computer-Aided Translation 181
5.6.2 Studies on Adaptation . 185
5.6.3 Evaluation of User Studies 187

5.7 User Study with the Graphical Interface 188
5.7.1 Data Selection & Machine Translation Model 188
5.7.2 Experimental Design . 192
5.7.3 Adaptation: Sanity Check 193
5.7.4 Adaptation: Batch Analysis 195
5.7.5 Adaptation: Case Study . 196

5.8 User Study with Neural Machine Translation 198
5.8.1 Adaptation by Fine-Tuning 199
5.8.2 Experimental Design . 199

5.8.2.1 Background Model 200
5.8.3 Analysis . 201

6 Summary & Outlook 204

vi

List of Algorithms

1 Stratiőed approximate randomization test for machine translation
system comparison. Inputs: Test set, number of random restarts r,
system outputs A and B, and evaluation metric. Algorithm adapted
from [Riezler and Maxwell, 2005]. 38

2 Structured perceptron. Inputs: Learning rate η, set of training
examples with size N . Algorithm adapted from [Collins and Duffy,
2002]. 46

3 Baseline online pairwise ranking algorithm (adapted from [Simianer
et al., 2012]). Inputs: Number of epochs T , parallel training data
I, learning rate η, gold-standard function g(·), pair generation
algorithm Q. 70

4 The heuristic training data generation of Hopkins and May [2011].
Inputs: k-best list K, gold-standard function g(·), threshold δ, and
maximum number of pairs l. 91

5 Generating training data using multiple quality levels. The algorithm
requires a single hyperparameter κ to determine the quality levels.
Inputs: k-best list K, gold-standard function g(·), parameter κ. . . 92

6 Full pairwise sample for training data generation. Inputs: k-best
list K, gold-standard function g(·). 94

7 Training data generation by selecting hope and fear translations.
Inputs: k-best list K, gold-standard function g(·), model score m(·). 95

8 Parameter mixing for online pairwise ranking optimization algorithm
(adapted from [Simianer et al., 2012]). Inputs: Number of epochs
T , number of shards Z, parallel training data I, learning rate η,
gold-standard function g(·), pair generation algorithm Q. 98

9 Iterative parameter mixing for online pairwise ranking optimization
(adapted from [Simianer et al., 2012]). Inputs: Number of epochs
T , number of shards Z, parallel training data I, learning rate η,
gold-standard function g(·), pair generation algorithm Q. 99

10 ℓ1 regularization with clipping. Algorithm adapted from [Tsuruoka
et al., 2009]. 101

11 ℓ1 regularization with cumulative penalty. Algorithm adapted from
[Tsuruoka et al., 2009]. 102

vii

List of Algorithms

12 Iterative mixing algorithm with feature selection (adapted from
[Simianer et al., 2012]). Inputs: Number of epochs T , number of
shards Z, parallel training data I, learning rate η, gold-standard
function g(·), pair generation algorithm Q, regularization parameter k.107

13 Asynchronous optimization with iterative feature selection, AsyncSGD.
Inputs: Number of epochs T , number of workers Z, parallel data I,
feature selection frequency F , number of features K, learning rate
η, gold-standard function g(·), pair generation algorithm Q. 108

14 Online learning protocol with online adaptation according to Cesa-
Bianchi et al. [2008]. Algorithm adapted from [Wäschle et al., 2013]. 146

viii

List of Figures

2.1 Inserting the word łonlyž in any of the eight possible positions
within the sentence, alters the sentence’s semantics, depending on
the position and accordingly on the part of speech the word takes. 10

2.2 Example of a word alignment matrix: The source and target word
positions correspond to rows and columns respectively. Alignment
links are visualized by cells with a black background at the according
positions. 19

2.3 SCFG Example. 24
2.4 Input string as DAG: States are denoted by a number, and edges

by a string. The initial state has a bold border, and the accepting
state a double border. 25

2.5 Example output for a synchronous parse in a hypergraph represen-
tation: The source parse is on the left-hand side, and the target on
the right-hand side. Nodes on the source side are annotated with
their respective source spans. Source-to-target alignment is shown
as dashed gray lines. Annotated edges represent terminal nodes. . 26

2.6 POS-tag sequences for two interpretations for the English sentence
łWe saw her duck.ž. 32

2.7 Two hinge losses and the zero-one loss. 59

3.1 Top: Granted US patent US-3386250-A, titled łWater current con-
trolling meansž, classiőed under major section E (’Fixed Construc-
tions’); Bottom: Granted US patent US-3313250-A, titled łTrap
to prevent robbery of a bankž, classiőed under major section G
(’Physics’). 65

3.2 SCFG rules for translation. 77
3.3 Comparing different variants of per-sentence BLEU approximations

for the gold-standard function. 89
3.4 Visualization of multipartite pairwise ranking. Figure adapted from

[Simianer et al., 2012]. 93
3.5 ℓ1/ℓ2 regularization enforcing feature selection. Example adapted

from [Simianer et al., 2012]. 106
3.6 Perceptron variants on Nc∗ data. 113
3.7 Perceptron variants on Wmt13 data. 114
3.8 Perceptron variants on Wmt15 data. 114

ix

List of Figures

4.1 Excerpts from abstracts of two distinct, but related patent documents
about glow plugs for diesel engines. 145

4.2 Sample output of the constrained search algorithm including two
unaligned source and target words. Example adapted from [Bertoldi
et al., 2014; Wäschle et al., 2013]. 151

4.3 Results for the k-best reranking adaptation on English-to-Italian
IT data: Positive results are located in the bottom right quadrant,
with an increase in the BLEU score and a decrease in TER. Figure
adapted from [Bertoldi et al., 2014]. 156

4.4 Second set of results for the k-best reranking adaptation on IT

English-to-Italian data. Figure adapted from [Bertoldi et al., 2014]. 157
4.5 Results for the k-best reranking adaptation on Legal English-to-

Italian data. Figure adapted from [Bertoldi et al., 2014]. 159
4.6 Second set of results for the k-best reranking adaptation on Legal

English-to-Italian data. Figure adapted from [Bertoldi et al., 2014]. 159
4.7 Results for the k-best reranking adaptation on Legal English-to-

Spanish data. Figure adapted from [Bertoldi et al., 2014]. 161
4.8 Results for the k-best reranking adaptation on Patent English-to-

German data. Figure adapted from [Bertoldi et al., 2014]. 162
4.9 Results for the k-best reranking adaptation on Patent German-to-

English data. Figure adapted from [Bertoldi et al., 2014]. 163

5.1 Partial view of an exemplary use of the graphical PE user interface.
Figure adapted from [Simianer et al., 2016]. 169

5.2 Server-client architecture of the online adaptive post-editing interface
with statistical machine translation engine in a graph-based visual-
ization with focus on server-side ŕow: Nodes with dark backgrounds
represent abstract processes, diamond shaped nodes are junctions,
and regular boxes represent processing steps. Figure adapted from
[Simianer et al., 2016]. 174

5.3 Post-editing user interface with text-based input. Screenshot adapted
from from [Karimova et al., 2017]. 177

5.4 Title (underlined) and excerpt containing two sentences of the ab-
stract of patent WO-2007000372-A1. 189

5.5 Title and excerpt containing two sentences of the abstract of patent
WO-2007031371-A1. 189

5.6 Learning curves for eight translators using the graphical interface in
őve consecutive sessions. 192

5.7 Cumulative difference in per-sentence %BLEU between adapted and
the baseline system for both adaptive sessions. 193

5.8 Simpliőed server-client architecture which is used for the NMT user
study. 198

x

List of Tables

2.1 Top-level sections of the International Patent Classiőcation (IPC). 40

3.1 Statistics for News-commentary (Nc) German-to-English data. . . 71
3.2 Statistics for Europarl (Ep) German-to-English data. 72
3.3 Statistics for WMT’13 (Wmt13) German-to-English data. 73
3.4 Statistics for WMT’15 (Wmt15) Russian-to-English data. 73
3.5 Comparing Sparse and Dense feature sets on small-scale Nc@

data tuning on a small development (baseline algorithm) set as
well as the full bitext (IterMixSGD algorithm, cf. Section 3.10):
Signiőcance is assessed with an approximate randomization test
between experiments in the same group, and signiőcant differences,
with p < 0.05, to the best result (in bold) are denoted by †. Table
adapted from [Simianer et al., 2012]. 79

3.6 Comparing Sparse and Dense feature sets on small-scale Nc∗ data,
tuning on a single, small development set. 79

3.7 Comparing Sparse and Dense feature sets on medium-scale Ep∗

data, tuning on a single, small development set. 80
3.8 Comparing Sparse and Dense feature sets on large-scale Wmt13

data, tuning on a single, small development set (TuningS). 80
3.9 Comparing Sparse and Dense feature sets on Wmt15 data, tuning

on a single, small development set as well as the full bitext. 80
3.10 Synthetical experiments using the Sparse feature set for both full

and multipartite settings, reporting accuracies on test data and error
rates on training data. 83

3.11 Synthetical experiments using the Dense feature set for both Full
and multipartite settings, reporting accuracies on test data and error
rates on training data. 84

3.12 Experiments with different pair selection strategies on a small scale
experiment based on the small data set (Nc∗∗). 96

3.13 Experiments with a structured objective on small and medium scale
data using the Nc∗ and Ep∗ data sets with Dense and Sparse

features. 97

xi

List of Tables

3.14 Comparing different, synchronous parallel optimization schemes on
the small Nc@ data set, training on the full bitext with Dense

and Sparse feature sets. Signiőcance is assessed with approximate
randomization tests between all experiments in a group, signiő-
cant improvements are denoted by the number of the respective
algorithms. Table adapted from [Simianer et al., 2012]. 110

3.15 Random re-sharding per epoch versus sharding once on the Nc∗

data tuning on the bitext with Sparse features. 110
3.16 Random re-sharding per epoch versus sharding once on the Wmt13

data set using the TuningL data for training. 110
3.17 Synchronous and asynchronous parallelized SGD with ℓ1/ℓ2 regularization-

based feature selection using the Sparse feature set on the TuningL
data. 111

3.18 Comparing averaged and single best performing weights for Dtrain

on development test. 113
3.19 Highlighting the performance of training on the bitext on Nc∗ data

in comparison to Mert and using the margin perceptron loss. . . . 117
3.20 Highlighting the performance of training on the bitext on Ep@,

especially how the learned weights carry over to two out-of-domain
test sets. Table adapted from [Simianer et al., 2012]. 118

3.21 Highlighting the performance of training on the bitext on Wmt15

data in comparison to Mert and using the margin perceptron loss. 119
3.22 Highlighting the performance of training on the bitext on the large

Wmt13 data in comparison to Mert and using the margin percep-
tron loss. 119

3.23 Results using the Mira algorithm in comparison to other methods
on Nc∗ data and the Dense feature set. 121

3.24 Results using the Mira algorithm in comparison to other methods
on Wmt13 data and Dense and Sparse feature sets. 122

3.25 Mert tuning on the Independent, Pooled, and Pooled-Cat

conőgurations. Signiőcance testing is performed by approximate
randomization (comparing results within the same row). Signiő-
cantly superior results are denoted by preőxed indexes referring to
the respective tuning set if p < 0.05. Table adapted from [Simianer
and Riezler, 2013]. 123

3.26 Dtrain tuning with all data sets using the baseline algorithm
(Algorithm 3) and Sparse features. Table adapted from [Simianer
and Riezler, 2013]. 124

3.27 Dtrain tuning with all conőgurations using the baseline algorithm
(Algorithm 3), Sparse features and ℓ1 regularization as described
in Section 3.10.1. Table adapted from [Simianer and Riezler, 2013]. 125

xii

List of Tables

3.28 Dtrain tuning with all conőgurations using the baseline algorithm
(Algorithm 3), Sparse features and the margin perceptron. Table
adapted from [Simianer and Riezler, 2013]. 126

3.29 Dtrain tuning with all conőgurations using the IterMixSelSGD

algorithm, Sparse features and the standard perceptron (with two
columns replicated from Table 3.26 for comparison). Table adapted
from [Simianer and Riezler, 2013]. 126

3.30 Dtrain tuning with all conőgurations using the IterMixSelSGD

algorithm, Sparse features and the margin perceptron. Table
adapted from [Simianer and Riezler, 2013]. 127

3.31 Distribution of IPC classes in % in development data sets for a
Japanese-to-English patent translation task. Table adapted from
[Simianer et al., 2013b]. 128

3.32 Tuning results for Japanese-to-English patent translation task. Re-
sults in bold are signiőcant improvements over the Mert baseline
with p < 0.01. Table adapted from [Simianer et al., 2013b]. 128

3.33 Results for German-to-English spoken language translation for IWSLT’13.
Table adapted from [Simianer et al., 2013a]. 131

3.34 Ablation test for sparse features on German-to-English spoken lan-
guage data (IWSLT’15). Table adapted from [Jehl et al., 2015]. . . 132

3.35 Russian-to-English spoken language translation experiments. Table
adapted from [Simianer et al., 2013a]. 133

3.36 English-to-Russian spoken language translation experiments for
IWSLT’13. Table adapted from [Simianer et al., 2013a]. 134

3.37 Experimental summary for the German-to-English Nc∗ data set. . 135
3.38 Experimental summary for the German-to-English Ep∗ data set. . 136
3.39 Experimental summary for the German-to-English Wmt13 data set. 136
3.40 Experimental summary for the Russian-to-English Wmt15 data set. 137

4.1 Training data for building the phrase-based machine translation
systems for the simulated post-editing experiments with k-best
reranking. Table adapted from [Bertoldi et al., 2014]. 154

4.2 Statistics for test sets used for simulated post-editing experiments
for IT English-to-Italian system, along with scores for the 1-best
results, as well as repetition rates (RR) for the source and target
segments (cf. Section 4.6.4.1). Table adapted from [Bertoldi et al.,
2014]. 155

4.3 Statistics for test sets used for simulated post-editing experiments
for the Legal English-to-Italian system, along with scores for the
1-best results. Table adapted from [Bertoldi et al., 2014]. 158

xiii

List of Tables

4.4 Statistics for test sets used for simulated post-editing experiments
for the Legal English-to-Spanish system, along with scores for the
1-best results. Set-0 is the concatenation of Set-3–11. Table
adapted from [Bertoldi et al., 2014]. 160

4.5 Statistics for test sets used for simulated post-editing experiments
for the Patent English-to-German / German-to-English systems,
along with scores for the respective 1-best results. Repetition rates
are depicted for the English-to-German direction. Table adapted
from [Bertoldi et al., 2014]. 161

4.6 Repetition rates versus average RR on sets with degraded translation
quality through reranking (in terms of BLEU or TER). 164

5.1 Keyboard and mouse controls for the graphical post-editing interface.176
5.2 Differences of adapted and vanilla systems in corpus-level MT metrics

for all sessions using adaptive MT systems. Averages are depicted
in the last row. 194

5.3 Results of the estimated linear mixed-effects models with data from
the experiments with the graphical user interface. Table adapted
from [Simianer et al., 2016]. 195

5.4 Results of the estimated linear mixed-effects model with data from
the experiments with the neural MT system. 201

xiv

Abbreviations

AI Artiőcial Intelligence
ALPAC Automatic Language Processing Advisory Committee
ASR Automatic Speech Recognition
BLEU Bilingual Evaluation Understudy
CAD Computer-Aided Design
CAT Computer-Aided Translation (or: Computer-Assisted Translation)
DAG Directed Acyclic Graph
DARPA Defense Advanced Research Projects Agency
DFG Deutsche Forschungsgemeinschaft (German Research Foundation)
EPO European Patent Office
FAMT Fully Automatic Machine Translation
FAHQMT Fully Automatic High Quality Machine Translation
FAHQT Fully Automatic High Quality Translation
FST Finite-State Transducer
HAMT Human-Aided Machine Translation
HBLEU Human-Targeted BLEU
HTER Human-Targeted Translation Error Rate (Or: . . . Edit Rate)
IAMT Interactive Machine Translation
IPC International Patent Classiőcation
IR Information Retrieval
IWSLT International Workshop on Spoken Language Translation
KSMR Keystroke and Mouse Action Ratio
KSR Keystroke Ratio
LMEM Linear Mixed-Effects Model
MAHT Machine-Aided Human Translation
MAP Mean Average Precision
MAR Mouse Action Ratio
MBR Minimum Bayes-Risk
MERT Minimum Error Rate Training
MIRA Margin-Infused Relaxed Algorithm
ML Machine Learning
MLE Maximum Likelihood Estimation
MT Machine Translation
NIST National Institute of Standards and Technology
NLP Natural Language Processing
NP Non-Deterministic Polynomial-Time
NTCIR NII Testbeds and Community for Information Access Research

xv

Abbreviations

OOV Out-of-vocabulary
PBMT Phrase-Based Machine Translation
PE Post-Editing
PRO Pairwise Ranking Optimization
PWR Pause to Word Ratio
RNN Recurrent Neural Network
RR Repetition Rate
SCFG Synchronous Context-Free Grammar
SGD Stochastic Gradient Descent
SMT Statistical Machine Translation
SVM Support Vector Machine
TER Translation Error Rate (or: Translation Edit Rate)
TM Translation Memory
WFST Weighted Finite-State Transducer
WIPO World Intellectual Property Organization
WMT Workshop on Machine Translation (now: Conference on Machine Translation)
WPA Next Word Prediction Accuracy
WSCFG Weighted Synchronous Context-Free Grammar
WSR Word Stroke Ratio

xvi

Notation

N , n Variables
M Matrix
v Vector
S Set
R Reals
N Integers
N+ Positive natural numbers excluding 0.
R

n Real vector space with dimensionality n.
S Feature space
X(k,i) Index i relative to offset k in a ranking vector or matrix (real index j = k + i).
S(i) Element at position i of the (ordered) set S.
vi Component i of vector v, or vector with index i within a sequence of vectors.
Mij Component and index i, j in matrix M.
Mi Column i of matrix M.
M(j) Row j of matrix M.
fg,h Function f with a dependency on objects g and h.
| · |p ℓp norm
||W||p,q ℓp/ℓq matrix norm
iff If and only if.
⟨·, ·⟩ Dot product
(·)+ max(0, ·)
· Placeholder

All vectors are assumed to be column vectors unless noted otherwise. Notation can
be used differently in some contexts.

xvii

1 Introduction

„Und wenn es auch nur ein kleines und schäbiges Krystall wäre, aber doch eins.“
[Wittgenstein, 1930, Denkbewegungen, a.a.O., S. 21]

Translation is a complex task for humans, but it is a even more daunting task for
machines. Much research has been carried out to enable machines to łunderstandž
natural language, arguably without a major breakthrough to date (2017) Ð possibly
because natural language is tremendously different from what machines are typically
able to comprehend. Syntax, pragmatics or semantics of natural language seem to
be difficult concepts to capture with the precision that computational processing
demands.

Translation between a pair of natural languages1 to be performed automatically
by a machine was one of the őrst applications for computers after the second
world war and can be considered a seminal work in the őeld of natural language
processing (NLP). After some őrst successes, there was a decline in interest, due to
the technology seemingly just not being adequate for the problems at hand, which
was infamously recorded in the report by the Automatic Language Processing
Advisory Committee (ALPAC) [Pierce and Carroll, 1966].

Methods based on statistical modeling breathed new life into the machine
translation (MT) research and practice due to their natural capability of dealing
with the ambiguities found in natural language. The statistical models of language
translation have evolved a lot since then, and today they are a readily available
tool in a globalized world for use in a wide range of practical applications.

As powerful as these methods are, the general problem of language and its
inherent ambiguity still remains. The statistical models we are concerned with are
learned from data, and since language is virtually inőnite2, the data can in any case
be only a more or less insufficient sample. To build meaningful models of translation,
the data used in (statistical) machine translation (SMT) most commonly originates
from texts covering a range of different topics, times, contexts and authors, to
maximize coverage and in an attempt to estimate reliable statistics. This poses
a new problem: Translations produced with these models tend to represent the
lowest common denominator between all the different aspects that constitute
the product of translation. In addition, as the sheer combinatorial space that

1We will call a pair of natural languages simply a language pair, the languages in the pair are
referred to as source and target, respective of the translation direction.

2This statement holds true for the combination of existing vocabulary to coherent utterances
(sentences), as well as the production of new items in a language’s vocabulary.

1

1 Introduction

applies in translation is so large, (some) models in SMT pose strong independence
assumptions in their choice of translation units3, which further aggregates the
problems. With machine translation modeled by neural networks, it is possible to
build richer statistical models, which rectify this problem to some extent, but still
not completely.

While overcoming the immanent need for hand-written rules for translation, the
statistical models have their own set of problems. The symptoms of these problems
can be acceptable if machine translation is just used as a means for getting a
general idea4 of a text in foreign language, but they can become a severe problem
if a translation is meant for direct human utilization, or if it is used as a starting
point for a human translator: Contexts may demand certain wording in order
to convey the right meaning, or authors may prefer to translate certain passages
differently. As variation is endless, these issues are a constant factor in dealing
with statistical models for NLP.

In the literature the topic, genre, and style of a text are broadly referred to as
its domain [van der Wees et al., 2015]. Domain is an important concept in NLP, as
well as machine translation where the goal is to produce a semantically equivalent
target-language utterance to a given source input, that was in turn generated in
a speciőc context. Capturing the context in translation is difficult as the domain
is usually only implicit and its characteristics inherently vague. The alterations
in the language going from one domain to another can be manifold: Ambiguities
may have to be resolved differently, structural properties such as word order are
subject to change, as well as the use of idiomatic expressions. Adapting an existing
statistical model to a new domain is called domain adaptation, effectively changing
a model to better reŕect the current domain of interest.

If machine translation is used as a tool for humans5 e.g. for professional transla-
tors, the domain adaptation problem has even higher signiőcance: The event of
receiving N different translations when having N people translate the same source
text is quite likely, arguably close to certainty, depending on the source text. This
imposes another dimension onto the domain adaptation problem as described before,
since preferred wordings and expressions of single authors are delicate to capture
and model. Furthermore, certain external requirements regarding terminology and
consistency are likely to be postulated in a professional environment. So it may be
safe to say, that adaptation of MT in this setting is a different compared to general
domain adaptation. We argue that both general domain adaptation, and a more
specialized adaptation have to be implemented if the goal is to make MT the most
useful tool it can possibly be for human translators.

3These may be characters, words or phrases depending on the model at hand.
4What is sometimes called a “gist” or “gisting”.
5Human-machine interaction in the field of translation is most commonly referred to as computer-

aided translation (CAT).

2

1.1 Preference Learning for Machine Translation

In the simplest case the success of domain adaptation efforts in MT are evaluated
in terms of translation quality given a set of prefabricated reference translations.
Most often, quality is used in the sense of similarity between translation outputs
and these reference translations. In the case of CAT, machine translations may
also be evaluated in terms of their utility to a translator, and by derived measures
such as translation speed.

In the work presented here, we seek possible remedies or solutions for three
problems: a) general translation quality improvements6, by efficiently exploiting
large amounts of data from varied sources, learning useful global ranking models
e.g. by őnding commonalities in the data, b) a more őne-grained adaptation for
a CAT scenario, making use of methods that try to automatically learn speciőc
preferences which are given by observed, possibly user- or domain-speciőc data,
and c) learning to adapt to individual translators also in a CAT scenario by directly
interacting with translators by exploiting the most direct feedback possible.

The problems a), b) and c) are approached as preference learning problems, and
more speciőcally as ranking problems, where the goal is to learn a ranking function
which adheres externally induced preferences.

We now turn to describe our learning framework which we employ for approaching
these problems.

1.1 Preference Learning for Machine Translation

Given an sufficient amount of data, the MT systems discussed in this work are
able to generate an elusively large set of translation alternatives for any given
utterance7. It is quite likely that an adequate translation is contained in that set, or
at least some acceptable translation candidate. However, as evident by the lack of
readily available fully automatic high-quality machine translation (FAHQMT), the
best translation hypothesis selected by a system as its output is more often than
not the wrong choice. There are a number of different reasons for this behavior:
Insufficient statistical evidence in the training data of the MT system, impossible
required conőguration of translation units, or simply unknown new vocabulary.
The most common reasons are however modeling- and search errors: Due to the
huge output space, which renders exact search methods infeasible, traditional
machine translation systems heavily rely on independence assumptions and use
a simple scoring function for decoding that introduces further approximations
through pruning.

It is a recurring theme in MT, that while the system is theoretically able to

6The developed method can also be used for efficient domain adaptation, improving domain-
specific translation quality, which we also empirically substantiate.

7The number of possible translations depends of course on the length of the given utterance.

3

1 Introduction

produce very good translations for most utterances, it can just not be scored as
such by the model or is lost in search, see e.g. the discussions in [Sokolov et al.,
2013] or [Och et al., 2004].

Variants of pruning are implemented in the underlying statistical models, as
well as the scoring function, that is used to assess the őt of partial translation
hypotheses that make up the őnal translation output (a complete hypothesis). In
SMT, this scoring function is generally quite simplistic, i.e. a linear model, and it
is prone to select globally non-optimal translations due to its local pruning choices.

Taking a simpliőed view, the scoring function has to select a number of hypothe-
ses from a list of possible extensions at each step of the translation process. In other
words, the scoring function produces a ranking of the possible (partial) translations.
This insight enables the application of a powerful class of algorithms which can
be subsumed under the umbrella term preference learning8. Fundamentally for
our work we may learn preferences from correct rankings (the learning-to-rank
approach, speciőcally pairwise ranking, see e.g. [Herbrich et al., 1999; Joachims,
2002; Watanabe et al., 2007b; Hopkins and May, 2011]), as well as from structured
representations of translations deemed correct (structured prediction approach, see
e.g. [Collins, 2002]).

As already mentioned, correctness is a fuzzy concept in translation, which is
why we will resort to similarity-based evaluation metrics for the most part of our
work, i.e. what we call translation quality. Both pairwise ranking and structured
prediction have in common that they are trying to learn a linear scoring function
in such a way that the function assigns higher scores to higher quality translations
and lower scores to ones of less quality. This in turn should result in overall
better quality in the translation output. To put it slightly more formal: In the
pairwise ranking approach we learn a scoring function from rankings of translation
hypotheses according to a metric of translation quality, which is evaluated w.r.t.
some form of reference translations; In the structured prediction approach the
objective is focused on separating a single łbestž (or correct) translation and its
associated structure from competing translations and their respective structured
representations.

We are now in a position to further specify our problem statements with regard
to the just outlined proposed learning framework:

a) To improve general translation quality, we seek to learn a robust scoring
function from large amounts of data employing a pairwise ranking algorithm
for preference learning.

8Note that we generally use this term from a ranking perspective, see e.g. [Fürnkranz and
Hüllermeier, 2003] or [Fürnkranz and Hüllermeier, 2010].

4

1.2 Outline

b) In the second approach, turning to a CAT scenario, we seek to improve
translation quality following the same general approach as before, but using
a structured prediction approach to directly learn from the translations
provided by translators, in an attempt to obtain more specialized models
with preference learning.

c) Finally, we explore the most direct possible approach for preference learning
by requesting and exploiting direct user feedback to MT outputs, which can
then be used for adaptation.

Problems b) and c) need further differentiation: In the CAT scenario it is crucial
to effectively learn more őne-grained to effectively adapt the translations outputs,
which is why we explore adaptation with two different approaches: Engaging in
problem b), we learn to prefer user supplied translations over competing translation
hypotheses, by using representations of their exact outputs as target structure in
the structured prediction approach. This enables a very direct mode of learning.
However, in computer-aided translation, we can exploit even őner-grained feedback
since there is a human in the loop. By asking for explicit feedback for MT outputs
from translators, we are in a position to effectively learn user-speciőc preferences
directly. In c) we also investigate adaptation of a neural network based MT system.

The problem a) can be considered as a classical tuning task for SMT. In contrast,
problems b) and c) are evaluated as post-editing (PE) tasks9 Ð revealing a reference
translation or user-generated translation to the learning algorithm immediately
after evaluating the quality of the originally proposed machine translation. Due
to the nature of all of these problems, they can be approached using traditional
online learning methods.

1.2 Outline

Our work is structured as follows:

In Chapter 2 we provide the necessary background for the used MT approaches as
well as preference learning, which we discuss from the learning-to-rank perspective.
For SMT, formal introductions for word-, phrase- and hierarchical phrase-based
models are presented, with a focus on the latter since it is the model most promi-
nently used in our work. Also provided is a formalization of neural machine
translation (NMT), which we apply for online adaptation in a PE task. We also
formulate brief historical overviews of MT in conjunction with CAT, since research
and practical application of both őelds are closely interleaved. Since our work is

9Problem c) allows however for a different set of methods, since it actually considers a human-
in-the-loop.

5

1 Introduction

assessed by measuring relative differences in translation quality, manual transla-
tion effort and/or translation speed, we provide deőnitions of various automatic
translation metrics, and discuss their relation to human judgments. We further
discuss domains in the context of MT, and brieŕy present the different types of
natural language data used in this work, followed by a short discussion of general
domain adaptation methods in MT. Hereafter follows an in-depth discussion of
optimization for SMT, concentrating on applications of discriminative training
techniques. We describe other state-of-the art algorithms related to structured
prediction and direct error minimization. The algorithms are presented in the
context of ranking. Lastly, preference learning as used in this work is őrst described
from the perspective of the őeld of information retrieval (IR), concentrating on the
problem of learning rankings in the learning-to-rank framework.

After a thorough examination of optimization in SMT, we present our pairwise
ranking approach in Chapter 3. The presentation consists of in-depth analyses of
all aspects of the algorithm, as well as thorough empirical evaluation. Algorithmic
and implementational aspects such as parallelization, asynchronicity, regularization
and feature selection are discussed, as well as variants of the underlying trans-
lation metric which is used for ranking. We also provide benchmark results on
various data sets of the proposed algorithms. This part covers problem statement a).

Our őrst work in CAT is presented in Chapter 4, where we propose a struc-
tured perceptron for reranking k-best output of an SMT system, using a feature
representation of the actual reference or post-edit as target without resorting to
so-called łoraclež translations10 deőned by a surrogate metric [Och and Ney, 2002].
The approach is described in detail, and simulated PE experiments using either
reference translations or post-edited data are presented. We also describe the online
learning protocol and simulated PE, which our approach is an instance of, and
present related works in general reranking for SMT, adaptation methods in CAT
and simulated PE. This work covers problem statement b).

In the last chapter discussing original works (Chapter 5), covering problem
statement c), we present our approach for learning preferences from explicit user
feedback, which is collected from a human-machine interface for PE. We describe
the interface, our adaptation approaches and practical issues. In a second line of
work, we show how to adapt a neural statistical machine translation system with
post-edited translations. We further describe the two user studies we conducted,
and appropriate human-targeted evaluation metrics. Our work is put into perspec-
tive by contrasting it to a large body of related works. The outcome of the user

10Oracles in this context are translations contained in the search space which represent the best
output a system can possibly produce, given a reference translation.

6

1.3 Research Contributions

studies are analyzed with a linear mixed effects model (LMEM), which are also
deőned in this chapter along with an overview of evaluation in CAT.

Finally, we brieŕy summarize our work in Chapter 6, and give conclusions and
ideas for future directions of work.

1.3 Research Contributions

Our contributions to research in preference learning for machine translation can be
summarized as follows:

• Review of optimization techniques in SMT with a focus on scaling of both
training data and the feature space, as well as a discussion in the context of
ranking algorithms [Chapters 2 & 3];

• We present efficient algorithms for (parallelized) online, gradient-based pair-
wise ranking optimization for SMT [Chapter 3];

• Thorough analysis of linear models for pairwise ranking in application to
SMT with extensive experimental evaluation of pairwise ranking varying data
and feature sets [Chapter 3];

• An application of multi-task learning via regularization for large-scale SMT
tuning, which allows training on the full bitext as well as exploitation of
commonalities within the data [Chapter 3];

• Development of a novel k-best reranking method for SMT with a structured
prediction objective [Chapter 4];

• Evaluation of the aforementioned reranking technique in a simulated PE
setting [Chapter 4];

• Adaptation framework for learning from explicit user feedback including
manually generated word-alignments, and development of a suitable user
interface [Chapter 5];

• A user study contrasting adaptive to non-adaptive statistical machine trans-
lation systems, including other state-of-the art adaptation methods [Chapter
5];

• A user study contrasting adaptive to non-adaptive neural machine translation
systems [Chapter 5].

7

1 Introduction

1.3.1 Previous Publications

Parts of the research presented here has been previously published and was peer-
reviewed.

Ground-laying work for the pairwise ranking optimization as described in Chap-
ter 3 has already been carried out during a Master’s thesis [Simianer, 2012], of
which some of the core őndings are published in [Simianer et al., 2012]. Our őrst
works on multi-task learning for parameter optimization in SMT are described
in [Simianer et al., 2011] as an extension to the classical Minimum Error Rate
Training (MERT) algorithm. Further work in this direction [Simianer and Riezler,
2013], as described in Section 3.12.2, uses a similar setup (patent data divided in
parts by manual classiőcation) but utilizes a different algorithmic approach and
larger-scale data. Simianer and Riezler [2013] also describe vital extensions to
the original algorithms in [Simianer et al., 2012]. The usefulness of the pairwise
ranking approach, the proposed algorithmic extensions, multi-task learning, and
parameter optimization using the full bitext were thoroughly evaluated in [Simianer
et al., 2013a] (transcribed speech data, two language pairs and three translation
directions, cf. Section 3.12.3), [Simianer et al., 2013b] (patent data, translating
Japanese and Chinese into English, cf. Section 3.12.2.3), and őnally in [Jehl et al.,
2015] (transcribed speech data, English-to-German, cf. Section 3.12.3).

The reranking approach to learning preferences from post-edits in Chapter
4, was őrst described in [Wäschle et al., 2013]. A more detailed description of
the approach as well as further evaluation can also be found in [Bertoldi et al., 2014].

A short description of our proposed methods for learning directly from user input
in statistical machine translation (Chapter 5) is published as [Simianer et al., 2016].
The publication also comprises a description of the conducted user study and the
main őndings. A further, different analysis of the user study on neural machine
translation is published in [Karimova et al., 2017].

8

2 Background

“The only things in my life that compatibly exist with this grand universe are the
creative works of the human spirit.ž

[Ansel Adams, An Autobiography, 1985]

Automatic translation has a distinguished place in computer science (or more
speciőc NLP): Translation is a difficult1 task even for humans which requires long
training, and translations of natural language are in any case meant for direct
human consumption Ð it is therefore a daunting task to be carried out by machines.

In board games, classical examples for the application of artiőcial intelligence
(AI), the number of possible board conőgurations (the search space) is typically so
high that it is infeasible to explore it completely. There are for example about 1045

different legal board conőgurations in the game of chess2. Natural language and
translation in particular however have even worse characteristics: Imagine a 20-word
utterance in a source language, which is to be translated into another language
that we will call the target language. Now, disregarding context, and assuming
a non-realistic 1-1 correspondence in words for source and target languages, a
conservative estimate for possible translation candidates per word is say 10.3 We
then arrive at 2010 possible translations for our original source language sentence,
when assuming that the word order between two languages is monotone (identical),
and each word occurs exactly once. The former is however infrequently the case,
but even more so when languages are more łdistantž from each other, e.g. even
differing in the fundamental subject-object-verb placements4. Assuming completely
free word order, there are (2010)! possible translations, which are absolutely not
manageable in any way. To make matters worse, it is imperative getting word
order right Ð see for example the simplistic sentence depicted in Figure 2.1, where
the semantics can be varied in dramatically different ways, inserting the adjective
only at any position within the sentence.

An adequate translation system should be able to correctly transfer the meaning
of the sentence to a valid target language utterance. Coming up with an algorithm
that handles all these cases is bound to be difficult.
1Depending however on the subject matter.
2Cf. https://tromp.github.io/chess/chess.html.
3This number will be even higher if translation candidates are automatically determined through

co-occurrence in a statistical dictionary or phrase-table.
4Subject (S), object (O), verb (V): SOV (e.g. Latin) — SVO (e.g. English) — VSO (e.g. Arabic)

— VOS (e.g. Malagasy) — OVS (e.g. Urarina) — OSV (Yoda from the Star Wars movie
series).

9

https://tromp.github.io/chess/chess.html

2 Background

She told him that she loved him.

Figure 2.1: Inserting the word łonlyž in any of the eight possible positions within
the sentence, alters the sentence’s semantics, depending on the position
and accordingly on the part of speech the word takes.

The wide range of problems in automatic translation has led to the development
of manifold approaches to MT, consolidating different lines of research for the
sublime goal of adequate and ŕuent automatically generated translation: Linguistic
theories such as syntax and semantics, which are trying to őnd formalizations
of language and translation of languages, have been applied for developing and
analysing both rule-based and statistical systems; Developments from graph theory
are used to encode and efficiently explore the vast number of possible translations
for each given source utterance; Probability theory and statistics are used to
mathematically grasp the task of translation; ML and optimization are employed
as a means for learning efficient models of translation; And lastly, neural networks
provide an alternative way of learning the underlying statistical models.

Aside from the technical formulation of the task of translation, there is a human
factor which adds further layers of complexity: Since the fragile rule-based or
statistical models underlying machine translation need lots of examples or training
data for developing or learning appropriate models, it is almost inevitable that
many details and nuances that natural language exhibits are bound to be lost when
trying to build a general model for each and every application.

Due to these complex issues, up to date (2017), machine translation still suffers
from severe limitations preventing its use for many practical automated applications.
There is however signiőcant adoption of machine translation in the őeld of CAT,
interfacing machine translation and human translators.

In this chapter we őrst give a short history of MT as well as CAT. We then present
the different approaches to machine translation that are used in the remainder of
this work. We furthermore present methods for evaluating machine translation in
the context of reference translations, as well as the data that we use to build the
MT systems used in our work. Lastly, we present a range of optimization methods
in SMT which are relevant to this work, and describe the fundamentals used in the
following chapter.

10

2.1 A Very Short History of MT & CAT

2.1 A Very Short History of Machine Translation & Computer-Aided Translation

After the Second World War, MT was one of the őrst applications for the recently
invented computers5. From that time, one of the most cited sayings by Warren
Weaver was conveyed:

“One naturally wonders if the problem of translation could conceivably be treated
as a problem in cryptography. When I look at an article in Russian, I say: ’This is really
written in English, but it has been coded in some strange symbols. I will now proceed
to decode.ž

[Weaver, 1949]

Laying the ground work for the information theoretic treatment of the translation
problem Ð considering MT as a cryptographic problem, translating an encoded
sequence of strings to a plain text one through decoding.

However, soon after the őrst conference on machine translation had been held
[Hutchins, 1997; Reiŕer, 1954], the idea of computer-aided translation in the form
of PE was formulated by Yoshua Bar-Hillel, proving some doubt in the promise of
fully automatic machine translation (FAMT).

Contrariwise, because of the Cold War, the interest in the Russian-English
language pair was unbroken in the US, and some successes could be acclaimed,
for example adequate translations of speciőc scientiőc Russian texts into English
[Dostert, 1955].

This lasted until the devastating ALPAC report that was published in the mid
1960s [Pierce and Carroll, 1966], which doubted that FAHQMT could ever be
achieved. The report however, explicitly encouraged research in CAT for improving
the efficiency of the human translation task.

After this report research in the US slowed down signiőcantly due to reduced
funding. Yet, research in other parts of the world continued unaffected, which for
example resulted in the interlingua approach to machine translation [Vauquois,
1975]6, completing the famous Vauquois triangle [Vauquois, 1968].

During the 1970’s and 1980’s rule-based MT matured to actual commercial
products, for example the Systran rule-based system [Ryan, 1989]. Pre- or post-
editing was an integral part of most systems [Wagner, 1985].

The concentration on rule- or interlingua-based systems in MT research was
eventually broken in the early 1990’s, where the idea of automatically exploiting
parallel sentence-aligned data with statistical models was őrst published in a series
of papers now referred to as the IBM models [Brown et al., 1993]. The following
research and development activity lead to the immensely practical statistical phrase-
based models [Koehn, 2004a; Chiang, 2007], which also were able to produce good
5The idea of MT was conceived earlier, see e.g. Hutchins [2007] for a more thorough disquisition

of MT history.
6This is just an exemplary publication for the field.

11

2 Background

translation results with minimal human intervention. Naturally, since machine
translations were becoming better and better, this lead to an increased interest in
applications of CAT, not later than empirical studies showed potential in real-world
tasks.

Due to advancements in hardware technology, neural networks őnally became
feasible in the late 2000’s and, among other things, proved to be the new state-of-
the-art in a large number of ML tasks, including various NLP applications. MT was
revolutionized shortly after, due to certain advancements in sequence to sequence
algorithms for language modeling, exhibiting much enhanced performance and
above all ŕuency őrst in hybrid [Devlin et al., 2014] then in fully NMT approaches
[Bahdanau et al., 2014] (inter-alia). Due to the performance and the simplicity
of these systems as well as their natural őt to certain setups, neural (statistical)
machine translation has sparked further development in CAT.

To summarize: The idea of fully automatic, and high quality machine translation
has had ups and downs throughout the short history of automatic translation, but
the idea of CAT has always been on people’s minds, as it is a natural application
of MT for practical purposes.

2.2 Statistical Machine Translation

Methods for MT have been iterated a number of times throughout its history, from
simple dictionary-based approaches for direct translation in between languages, over
complex methods involving a speciőcally designed interlingua which is supposed to
capture generic semantic concepts, and variations thereof [Vauquois, 1975].

The most successful approach however, providing generally available, useful
automatic translation, is the statistical approach. As in other őelds in NLP,
statistics cope quite naturally with the ambiguity found in natural language. But
since it is such a difficult task, a variety of statistical models of translation have
been developed.

We őrst review the general notion of providing a solution to natural language
translation in terms of probability theory and statistics, then brieŕy discuss tra-
ditional word-based models which serve as the starting point for the more useful
phrase-based models. Finally we introduce neural (statistical) MT.

2.2.1 Statistical Formulation of Translation

In the following we will describe the principle ideas of conducting translation in a
statistical framework, starting from the classical noisy channel [Brown et al., 1988,
1990, 1993], converging to the modern formulation as structured prediction using a
maximum entropy formulation [Och and Ney, 2002].

12

2.2 Statistical Machine Translation

In statistical machine translation, ideally, we would have a good estimate for any
conceivable pair of sentences7 e and f8 of how likely it is that they are translations
of each other. Here, e and f are represented by two random variables E and F ,
and are associated with a joint probability distribution P

P (E,F). (2.1)

For now we will ignore that this is an obviously overly conődent proposition,
and explain how one may arrive at a viable decomposition of that probability.

The general goal in generative modeling is to learn the joint probability distribu-
tion P , e.g. in classiőcation over objects X ∈ X and labels Y ∈ Y represented by
random variables X and Y respectively:

P (X,Y). (2.2)

This distribution should satisfy the following constraints:

∑

(x,y)∈{X×Y }

P (X = x, Y = y) = 1, (2.3)

∀(x, y) ∈ {X × Y } P (X = x, Y = y) ∈ [0, 1], (2.4)

where {X × Y} is the set of all possible pairs of assignments for X and Y 9. In
our case X = E and Y = F .

Without a concrete idea of how to estimate P (E,F), we could apply the chain
rule to decompose P into possibly feasible parts:

P (E,F) = P (E|F)P (F). (2.5)

There is no particular interest in estimating P (F), since we want to be able to
translate any utterance in the foreign language. Therefore we focus on the more
interesting conditional probability P (E|F).

Going further, using Bayes’ rule, we arrive at a feasible decomposition of P (E|F):

P (E|F) =
P (F |E)P (E)

P (F)
. (2.6)

7Implicitly, we defined the principal but intuitive simplification of statistical machine translation:
translational equivalence based on sentences.

8Historically e as in English is the target sentence, and f as in French is the source sentence.
9Note that in natural natural language, i.e. X = E and Y = F , these variable are most certainly

not independent, thus P (E,F) ̸= P (E)P (F).

13

2 Background

For translation, we are still not interested in P (F), and since there is no depen-
dence on E, the denominator can simply be dropped10. This leads us to the noisy
channel11 formulation:

P (E|F) ∝ P (F |E)P (E). (2.7)

This reformulated generative model frees us from the burden of having to esti-
mate a single single model P (E|F), but instead we have two models that we can
build independently. Brown et al. [1990] refer to P (F |E) as the translation model,
and to P (E) as the language model. Actual implementations of these two models
will be presented later in this section.

Given a concrete model of the noisy channel P (F |E), as well as a model of
general strings P (E), we are interested in őnding, for any f , the most probable
translation ê:

ê = argmaxe P (E = e|F = f)
= argmax

e
P (F = f |E = e)P (E = e). (2.8)

This search is called decoding12. In the noisy channel model, the argmax oper-
ation can be understood as the attempt of recovering the original message. For
P (F = f |E = e) we will write p(f |e) from now on, as well as for all other probabil-
ities.

The translation model p(f |e) is however still underspeciőed, as there is no direct
connection between the source f and its translation e. The model described in
[Brown et al., 1993] introduces the notion of an implicit, hidden alignment between
e and f . The translation model becomes:

P (F |E) =
∑

a∈A

P (F,A = a|E), (2.9)

10This is due to the fact that in actual translation, performing an argmax operation over P (E|F),
P (F) is constant and can thus be dropped.

11The noisy channel origins from the work on information theory of Shannon [1948] — a message
E is sent through a channel in which it is distorted, resulting in the corrupted message F .
In this view, P (F |E) is the noisy channel, and P (E) is a prior on the “original” message.
Church and Gale [1991], Mays et al. [1991] and Kernighan et al. [1990] first introduced
this probabilistic view into an NLP task, namely for spelling correction. Before that, the
formulation was already used in speech recognition [Bahl et al., 1983; Brown et al., 1994].

12This term stems from the famous quotation of Warren Weaver, embracing natural language
translation as a cryptographic task: “I will now proceed to decode.”

14

2.2 Statistical Machine Translation

and thus:

P (E|F) =
∑

a∈A

P (F,A = a|E)P (E), (2.10)

where A is the set of possible alignments between E and F .
The consequence of introducing an alignment between E and F is, that it allows

to break up the deőnition of translation probability to smaller items, e.g. single
words. With this, it is possible to deőne more useful models, as we will discuss in
the following section.

The noisy channel formulation for translation is still limited, as noted in [Och
and Ney, 2002]:

a) It is not possible to incorporate further models (possibly deőned on a different
data set) in a generalized way, so p(e) and p(f |e) have to be excellent, i.e.
close estimates of the true distributions, which is unlikely in practice;

b) p(e) and p(f |e) are independent by deőnition, which also applies to their
application in search Ð a weighted approach, balancing the models based on
their performance would be more appropriate.

A different approach, which can be naturally developed from the noisy channel
approach, is to directly model the conditional distribution P (E|F) with a discrim-
inative model. Och and Ney [2002] introduce this idea for MT and propose the use
of a log-linear13 model for this purpose.

This model applied to the formulation above results in the following deőnition
of the joint distribution P (F,E):

P (F = f,E = e) = p(f, e) =
exp (log p(f |e) + log p(e))

∑

f ′

∑

e′
exp (log p(f |e) + log p(e))

. (2.11)

However, in the log-linear framework, we can directly derive the conditional
distribution P (E|F):

P (E = e|F = f) = p(e|f) =
exp (log p(f |e) + log p(e))
∑

e′
exp (log p(f |e) + log p(e))

, (2.12)

that is, for any given f , we simply seek a distribution over possible values e,
using the previously deőned p(f |e) and p(e) as features. Due to the normalization,

13Or: Maximum entropy model.

15

2 Background

we can also add weights w1, w2 to the features, possibly balancing their relative
quality:

P (E = e|F = f) = p(e|f) =
exp (w1 log p(f |e) + w2 log p(e))
∑

e′
exp (w1 log p(f |e) + w2 log p(e))

. (2.13)

This approach can be generalized to use arbitrary feature functions hi(f, e), with
associated weights wi = w for i = 1 . . .M , and using log p(f |e) and log p(e) as
feature functions:

p(e|f) =
exp

∑M
i=1 wihi(e, f)

∑

e′
exp

∑M
i=1 wihi(e, f)

. (2.14)

Conveniently this equation can be formulated compactly by using a dot product
and by introducing a feature mapping function ϕ(f, e) that takes a source/translation
pair (f, e) and maps it to a vector14 of features [wi, . . . , wM]T = w:

pw(e|f) =
exp⟨w, ϕ(e, f)⟩
∑

e′
exp⟨w, ϕ(e, f)⟩

. (2.15)

The decision rule for őnding the optimal ê for a given f is just the denominator:

ê = argmax
e

pw(e|f)

= exp
∑M

i=1 wihi(e, f)

=
∑M

i=1 wihi(e, f)
= wϕ(e, f).

(2.16)

Note that, most commonly in MT, the feature map ϕ(·) is deőned over a triple
(f, e, a) (and thus h(f, e, a)), including the alignment between e and f . This allows
to deőne features of the derivation of a translation. This is due to the maximum
approximation used in the argmax computation, which is used to ensure feasibility
of the search problem.

2.2.2 Word-Based Models and Statistical Word Alignment

The so called IBM models introduced by Brown et al. [1993], provide a number
of decompositions of the probability distribution P (E|F) (as outlined before) and
appropriate procedures for learning the distribution from data.

The central idea of these models is breaking up E and F into sequences of words,
and deőning an alignment between them:
14In some contexts we thus write φ instead of ϕ to make this clear.

16

2.2 Statistical Machine Translation

• e = [0, e1, . . . , el], a vector of l random variables representing a target sentence,
as well as a őxed special Null token at 0,

• f = [f1, . . . , fm], a vector of m random variables representing a source
sentence,

• and an alignment a = [a1, . . . , am], deőned from f to e.

With this we can write the translation model as:

p(f1, . . . , fm, a1, . . . , am|e1, . . . , el,m) = p(f ,a|e,m), (2.17)

and

p(f |e) =
∑

a∈A

p(f ,a|e), (2.18)

where A is the set of all possible (l + 1)m alignment vectors.

The most simple models, IBM model 1 and 2, which we describe here, combine
a lexical distribution t(f |e) and a distribution over alignments u(j|i, l,m), (l,m) ∈
N+, i ∈ {1, . . . ,m}, and j ∈ {0, . . . , l}:

p(f ,a|e,m) = p(a|e,m)p(f |a, e,m)

=̂
m∏

i=1

u(ai|i, l,m)t(fi|eai
).

(2.19)

Note that the second equation introduces two important independence assump-
tions: 1) the alignment only depends on the lengths of the French and English
sentences, not on the words, and 2) that the lexical distribution does not depend
on the alignment.

In IBM model 1 (M1) the distribution over alignments is uniform, thus:

pM1(f ,a|e) =
p(m|e)

(l + 1)m

m∏

j=1

t(fj |eaj
), (2.20)

assigning the same probability to all alignments.

Since manually word-aligned data is infeasible to produce, the IBM models
cannot be simply estimated by using direct maximum likelihood estimation (MLE),
i.e.:

tML(f |e) =
c(f, e)
∑

f ′

c(f ′, e)
, (2.21)

17

2 Background

where c(f, e) counts alignments links between f and e in a word-aligned corpus.
Accordingly for the alignment:

uML(j|i, l,m) =
c(j, i, l,m)

∑

j c(j, i, l,m)
, (2.22)

where c(j, i, l,m) counts all occurrences of parallel sentences of lengths l and m
respectively, where the French word i is aligned to an English word j.

Therefore the IBM models are estimated using a variant of the expectation
maximization algorithm [Dempster et al., 1977].

Decoding, i.e. argmax
e
p(f |e)p(e), with the IBM models is NP-complete [Knight,

1999], hence approximations are needed [Wang and Waibel, 1997; Riedel and Clarke,
2009; Germann et al., 2001].

A by product of a fully trained word-alignment is the so called Viterbi alignment
â, deőned as [Brown et al., 1993]:

â = argmax
a∈A

p(f ,a|e), (2.23)

which can be generated by selecting:

âi = argmax
i

u(ai|i, l,m)t(fi|eai
) (2.24)

for each position i in the French sentence. The result (an unique alignment for a
given sentence pair) can be visualized in an alignment matrix, see Figure 2.2 for an
example.

The word-based models are not very useful for actual translation due to the harsh
independence assumptions and the comparatively complex word-based decoding.
They are however, as we will see in the phrase-based models, a good starting point
for more advanced approaches. For this purpose, alignment symmetrization is an
important concept, as őrst proposed by Och and Ney [2003]: Since the individual
word-alignment models only produce many-to-one alignments15 and not many-to-
many alignments, which would be more appropriate for natural language. A simple
symmetrization approach is to train two models, p(f |e) and p(e|f), generating
Viterbi alignments from both, and joining the alignments using set operations like
union, intersection or derivations thereof16. The resulting alignment is a proper

15In the formulation above, each French word f aligns to exactly one English word e or the Null
token.

16A popular symmetrization method, referred to as grow-diag-final-and [Koehn et al., 2003],
starts with the intersection and subsequently adds alignment links from the intersection.

18

2.2 Statistical Machine Translation

Michael

assumes

that

he

will

stay

in

the

house

.

M
i
c
h
a
e
l

g
e
h
t

d
a
v
o
n

a
u
s

, d
a
s
s

e
r

i
m

H
a
u
s

b
l
e
i
b
t

.

Figure 2.2: Example of a word alignment matrix: The source and target word
positions correspond to rows and columns respectively. Alignment
links are visualized by cells with a black background at the according
positions.

19

2 Background

many-to-many alignment.

A popular choice for a not oversimpliőed word alignment model is IBM model 2,
which is why there are modern implementations and extensions available, see e.g.
[Dyer et al., 2013] or [Gao and Vogel, 2008].

2.2.3 Phrase-Based Model

Phrase-based machine translation (PBMT) models [Koehn et al., 2003] partially
overcome the strong independence assumptions which are imposed to make word-
based models efficient. By using phrases instead of words as atomic translation
units, local contexts can be efficiently encoded.

Starting point for the phrase-based approach are symmetrized many-to-many
word alignments generated by running a word alignment algorithm in both trans-
lation directions. From this joint alignment, phrase-pairs (aligned sub-sequences
of source and target words) can be extracted. A standard requirement for phrase-
pairs is consistency with the word alignment, as deőned in Och et al. [1999]: A
phrase-pair is consistent iff all source words of a phrase are only aligned to words
of the target phrase (including Null) and vice-versa.

Estimation of the translation model is trivial for this model, since an explicit
alignment is given. It can simply be estimated through MLE:

p(f̃ |ẽ) =
c(f̃ , ẽ)

∑

f̃ ′ c(f̃ , ẽ)
, (2.25)

slightly abusing notation, ·̃ being phrases. After extracting phrases over a large
sentence-aligned corpus (bitext), the result of this process is a so-called phrase-table,
which contains all phrase-pairs that could be extracted and stores them in an
efficient manner.

Decoding in this model breaks down into two phases: First, the source sentence
to be translated is segmented according to the source-sides of phrases in the phrase
table. All segmentations are considered equally likely at őrst. In a second step,
each source phrase is translated into a target phrase according to the entries of
a phrase-table, making sure that each source phrase is translated exactly once.
Source phrases can be processed in any order, and the target translation hypothesis
is built left to right. This implies that reordering of phrases is allowed on the
target-side. Since most natural languages do not demand this level of ŕexibility,
Koehn et al. [2003] propose to incorporate a distortion model :

d(ai − bi−1) = α|ai−bi−1−1|, (2.26)

where α is a free parameter, ai is the start position of the source phrase yielding
the ith target phrase, and bi denotes the end position of the i− 1th target phrase.

20

2.2 Statistical Machine Translation

This allows penalizing large łjumpsž in the source sentence. Furthermore, another
parameter ω is added to the model, counting the number of produced words on
the target side, the so-called word penalty.

The different models and sub-models in the original phrase-based approach
of Koehn et al. [2003] are combined without explicit weighting during decoding
(omitting source segmentation):

ê = argmax
e

p(e|f) = p(e)ω|e|

[
∏

i

p(fi|ei)d(ai − bi−1)

]

, (2.27)

where |e| is the length of the current (partial) translation hypothesis, and fi is
the ith source-phrase with its corresponding target side ei. The log-linear model, as
introduced by Och and Ney [2002] for phrase-based statistical machine translation,
enables to use a (learned) weighted combination of the different models:

ê = argmax
e

w1 log p(e) + w2 logω
|e| +

[
∑

i

w3 log p(fi|ei) + w4 log d(ai − bi−1)

]

.

(2.28)
On the one hand this allows discriminatively learning task-speciőc weights [Och,

2003] as well as efficient weighted decoding, on the other hand, from a modeling
perspective, it enables adding arbitrary sub-models as features to make the model
more expressive. The decision function can, analoguosly to Equation 2.16, be
written more compactly as a single dot product:

ê = argmax
e

⟨w, ϕ(e, f)⟩, (2.29)

where ϕ is a function mapping the hypothesis to a joint feature space, just as
previously described for the word-based models.

It is important to note that the combinatorial issues when decoding are similar
to the ones with word-based models. This is why a variety of approximate search
techniques have to be applied in order to efficiently őnd a good translation hy-
potheses ê, such as beam search and hypotheses recombination for stack-based
decoding [Och et al., 2001; Koehn, 2004a]. Most of the decoding algorithms for
statistical machine translation are instances of dynamic programming, and as such,
they produce a search graph in the form of a probabilistic őnite state transducer
(FST), which can be exploited using general graph algorithms, such as efficient
generation of k-best hypotheses or sampling.

21

2 Background

In a search graph, vertices represent a (partial) hypothesis and its internal
state17. Edges are associated with phrase applications, covering parts of the source.
Complete hypotheses form a complete path through the search graph, covering the
whole source.

It is important to note, that the approximations for decoding in phrase-based
statistical machine translation signiőcantly divert from the originally proposed
model: Since the sum in argmax

e

∑

a
p(f ,a|e) is intractable, we instead seek

argmax
e
maxa p(f ,a|e), maximizing over all possible segmentations and align-

ments. However, as Och and Ney [2002] note, this can be alleviated by including
a in the joint feature map, deőning feature functions using the alignment a, i.e.
binary word translation features or identiőers for phrase-pairs.

The most widely used implementation of phrase-based statistical machine transla-
tion is the Moses toolkit [Koehn et al., 2007], which implements all of the discussed
algorithms.

2.2.4 Digression: Language Modeling

For the previous description of statistical machine translation we ignored an im-
portant part of the model: the language model p(e). It plays a viable role in most
SMT approaches by selecting ŕuent translations.

A general language model assigns probabilities over sequences of variable length
e = [e1, . . . , ek]:

p(e) = p(e1, . . . , ek). (2.30)

For short sequences the probability p can be broken up using the chain rule:

p(e1, e2, e3, e4) = p(e1)p(e2|e1)p(e3|e1, e2)p(e4|e1, e2, e3). (2.31)

This is however not feasible for longer sequences. A feasible alternative are N -
gram language models, which introduce independence assumptions, e.g. a unigram
language model would break up the probability in a series of independent events:

p(e1, e2, e3, e4) = p(e1)p(e2)p(e3)p(e4). (2.32)

In a bigram language model, in which sequences of conditional probabilities are
multiplied (all conditioned on a single previous token, a history), short of the őrst
item:

p(e1, e2, e3, e4) = p(e1)p(e2|e1)p(e3|e2)p(e4|e3). (2.33)
17In PBMT the state can be boiled down to a coverage vector, denoting the parts of the source

that are covered by the current hypothesis.

22

2.2 Statistical Machine Translation

More general, we can write an N -gram language model for sequences of arbitrary
length J as:

p(e) =
J∏

i=1

p(ei|e
i−1
1) ≈

J∏

i=1

p(ei|e
i−1
i−N). (2.34)

This is an application of the Markov Chain, which can importantly also be
encoded in a őnite state machine.
N -gram language models can be efficiently estimated from monolingual data

with maximum likelihood estimation:

pMLE(ei|e
i−1
i−N) =

c(ei−N , . . . , ei)
∑

e
c(ei−N , . . . , ei−1, e)

=
c(ei−N , . . . , ei)

c(ei−N , . . . , ei−1)
. (2.35)

However, since higher order N -grams are sparse, smoothing and/or interpolation
have to be applied [Chen and Goodman, 1996; Kneser and Ney, 1995], inter-alia.

A N -gram language model can be directly integrated into decoding for phrase-
based statistical machine translation by keeping track of the language model score
wLM log p(e) in each search state. But one has to adhere that enough history is
stored from previous states to calculate the score for the full N also when crossing
phrase boundaries. This enlarges the size of the search graph, since it impairs the
independence between states.

2.2.5 Hierarchical Phrase-Based Model

The hierarchical phrase-based model as proposed by Chiang [2005, 2007], is a
formalism to carry out machine translation with synchronous context free gram-
mars (SCFG). They are a type of syntax-based translation model, since syntactic
structures are built up during translation18. Instead of purely lexical phrase-pairs
as atomic translation units, grammar-based models use synchronous grammars
with non-terminal symbols integrated in source- and target-sides of their translation
rules. A complete example of a non-weighted synchronous grammar is depicted in
Figure 2.3.

This grammar accepts the well-formed German input strings ich sah ein kleines Haus,
and ein kleines Haus sah ich (amongst others), while it can synchronously produce
trees on the target side. A translation or rewrite rule of a synchronous context free
grammar consists of a left-hand side, which is a single non-terminal symbol, and
a right-hand side in the form of ⟨γ|α⟩, where γ and α are composed of terminal

18It is however a string-to-string model [Williams et al., 2016], since syntactic structure is not
necessarily exploited on either source or target side, and the tree structure is only used for
structuring the search space.

23

2 Background

R =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S → ⟨NP VP | 1 2 ⟩
NP → ⟨ich | I⟩
NP → ⟨ein NN | a NN⟩
NN → ⟨JJ Haus | 1 house⟩
NN → ⟨JJ Haus | 1 shell⟩
JJ → ⟨kleines | small⟩
JJ → ⟨kleines | little⟩
VP → ⟨V NP | 1 2 ⟩
V → ⟨sah | saw⟩

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 2.3: SCFG Example.

symbols and co-aligned19 non-terminal symbols. The alignment allows swapping of
sequences in source and target. The left part of the right-hand side of a rule (γ)
applies to the source, and the right part (α) to the target. Translation is carried out
by bottom-up parsing the source sentence, synchronously building a target tree20.
The leaves of the target tree form the string representation of the translation.

Formally, the translation formalism can be described as an intersection between
a weighted synchronous context free grammar (WSCFG) over a semiring K with
a non-weighted directed acyclic graph (DAG) that encodes a single path21 [Dyer,
2010b]. The WSCFG is deőned as G = ⟨Σ,∆,V,S, ⟨R, ρ⟩⟩, where Σ is a őnite set
of input terminal symbols, ∆ is a őnite set of output terminal symbols, V is a
őnite set of non-terminal symbols, S is a set of start symbols, and R is a set of
synchronous rewrite rules as described above, with an associated weight function
ρ : R → K, ρ (X→ ⟨·, ·⟩) = 1 ∈ K if X ∈ S (1 being the unit of semiring K).

For the example grammar given in Figure 2.3, we have Σ = {ich, sah, ein, kleines, haus},
∆ = {i, saw, a, small, little, house, shell}, V = {S,NP,VP,V, JJ,NN}, R deőned as
above, and S = {S}

The bottom-up parser can be described as a weighted logic program [Lopez, 2009;
Dyer, 2010b] intersecting the WSCFG with an input string, similar to an Earley
chart parsing algorithm [Earley, 1970]. The input string is, as already mentioned,
encoded as a DAG [Dyer et al., 2008], for our example as depicted in Figure 2.4.
The length of the input is l, and a span over the string is denoted as ⟨i, x, j⟩, where
i ≤ j, and x ∈ Σ∗. Finally, Q ⊂ N+ ∪ 0 is the set of nodes of the input DAG. The
binary operation ⊗ is the multiplication of the used semiring K. With this, the
parsing can be fully described by axioms, goals and inference rules:

19The so-called gap constraint, which allows synchronous parsing due to a one-to-one alignment
[Dyer, 2010b].

20In most practical applications, this will be a forest due to the ambiguity in the grammar.
21Dyer [2010b] describes the intersection with an arbitrary weighted finite state transducer, we

however focus on simple strings as input.

24

2.2 Statistical Machine Translation

0 1 2 3 4 5
ich sah ein kleines Haus

Figure 2.4: Input string as DAG: States are denoted by a number, and edges by a
string. The initial state has a bold border, and the accepting state a
double border.

Axioms:

[X→ ⟨•β | ζ⟩, q, q] : w
, ∀q ∈ Q \ 0, ∀X

w
−→ ⟨β|ζ⟩

Goals:
[X→ ⟨α • | ζ⟩, 0, l], X ∈ S ∧ ⟨0, α, l⟩

Inference rules:

Shift:
[X→ ⟨α • xβ | ζ⟩, r, s] : w

[X→ ⟨αx • β | ζ⟩, r, t] : w
, {r, s, t} ⊂ Q

Reduce:
[X→ ⟨α •Yβ | ζ⟩, r, s] : u [Y → ⟨γ • | ξ⟩, s, t] : v

[X→ ⟨αYs,t • β | ζ⟩, r, t] : u⊗ v
.

The time complexity of this algorithm is approximately O(lscope(R)), l being
the length of the input, and scope(R) the maximum number of consecutive non-
terminals in the set of rewrite rules R [Hopkins and Langmead, 2010]. In our
running example that amounts to O(52).

Alternatively, variants of the CYK chart parsing algorithm [Sakai, 1962] can
be employed Chappelier and Rajman [1998]; Sennrich [2014] for parsing with
non-binarized grammars.

The resulting chart is equivalent to a directed hypergraph [Klein and Manning,
2004] (or also a context-free forest), which renders the approach similar to the
őnite-state phrase-based models [Koehn et al., 2003]. Furthermore, using different
semirings K and shortest path algorithms such as Viterbi- [Viterbi, 1967] or
Dijkstra’s algorithm [Skiena, 1990], the framework allows to efficiently őnd the
derivation with maximum probability (Viterbi semiring), generalized shortest path
(real semiring), or total number of paths (counting semiring) [Goodman, 1999;
Huang, 2008]. The algorithms can also be readily extended to return k-best outputs,
see e.g. [Huang and Chiang, 2005]. The only condition is that throughout the
hypergraph, the parametrization conforms with the optimal substructure property

25

2 Background

2NP5

3NN5

3JJ4
ein

kl
e
in

e
s

H
a
u

s

NP

NN

JJ

a

s
m

a
ll little

h
o
u
se

sh
e
ll

Figure 2.5: Example output for a synchronous parse in a hypergraph representation:
The source parse is on the left-hand side, and the target on the right-
hand side. Nodes on the source side are annotated with their respective
source spans. Source-to-target alignment is shown as dashed gray lines.
Annotated edges represent terminal nodes.

of dynamic programming, which also demands linearity in the edge-local features
and the scoring function.

The hypergraph is a compact representation of all possible translations of a
given source string, as exempliőed in Figure 2.5 for the ambiguous part of the
running example. However, since SMT utilizes a language model for satisfactory
performance22, another method is needed to integrate language model scores.
Chiang [2007] describes an algorithm for a fully weighted intersection23 and an
approximate version including pruning of a language model.

Since the full intersection is often infeasible in practical applications [Dyer et al.,
2010], we always resort to the approximate variant. The key idea to these algo-
rithms is to include the relevant target information in the parsing items of the
chart, i.e. for a N -gram language model with N = 3:

[X→ ⟨α | ζd⋆e⟩, s, t],

22See for example [Blunsom and Osborne, 2008].
23Dyer [2010a] describes the integration of a language model into a synchronous parsing algorithm

by representing the language model as a WFST, and defining an intersection between the
WSCFG and the resulting WFST.

26

2.2 Statistical Machine Translation

where d and e are the őrst and last tokens of the current target-side production.
In the approximate algorithm, cube pruning, items are reduced selectively, based on
their combined score (including language model and the translation rule’s features).
For maximum ŕexibility, the integration of the language model or other features
can be carried out in a separate step after the initial production of the possible
translations under the given grammar. This procedure is referred to as forest
rescoring [Huang and Chiang, 2007] and implemented in the toolkit that we use in
this thesis [Dyer et al., 2010] (cdec).

Although this formalism can be used for all synchronous context-free grammars,
in the hierarchical phrase-based approach of Chiang [2005] (łHierož) the set of
non-terminals is limited to a single symbol X, and for efficiency several restrictions
on the shape of the grammar rules are imposed [Chiang, 2007]. Additionally, the
grammar is extracted in a non-linguistic manner, resembling the method described
for the previous phrase-based approach: After extracting all phrase pairs that are
consistent with the word alignment, phrases with łgapsž are produced by replacing
existing phrases within other phrases with the non-terminal symbol X.

This general approach can be readily used to cope with fully syntactic grammars
[Zollmann and Venugopal, 2006], or, exploiting the hierarchical tree structures,
used to incorporate (soft) syntactical features [Blunsom and Osborne, 2008; Vilar
et al., 2008; Marton and Resnik, 2008], assessing the syntactical well-formedness of
the tree derivations of translation hypotheses.

The great promise of parsing-based approaches to machine translation is the
greatly improved capability of coping with long-range, non-local reordering phe-
nomena, as for example common in verbal constructions in German. In turn,
they eliminate the need for reordering- or distortion models as used in the PBMT
approaches. For a őne-grained discussion on reordering see [Bisazza and Federico,
2016]. There are however some inherent limitations to the Hiero approach, either
because the restriction to binary grammars, which prevents modeling of some
synchronous parse conőgurations, or, because of the inability to model certain
transformations independently, see [Galley and Manning, 2010] for an overview.

2.2.6 Neural Machine Translation

Statistical machine translation with neural networks24 is a fundamentally different
approach compared to the previously presented approaches. With neural networks,
it is possible to directly implement the fundamental equation of machine translation

24Neural machine translation (NMT).

27

2 Background

without further approximations:

ê = argmax
e

p(e|f), (2.36)

(note that the vector notation is omitted here). The variant of neural translation
model used in this work is closely related to a certain form of neural network
language models based on recurrent neural networks (RNN) [Elman, 1990]. The
key feature of an RNN is that it is capable of storing an unlimited25 conditioning
history encoded26 in real vectors of őxed size, which predestines their use in
language modeling. A simple RNN can be deőned as follows (omitting the case for
t = 0):

ht = σ(f(xt,ht−1))
= σ(Wxt +Uht−1 + b)

(2.37)

where xt is the input at time step t, σ is a non-linear function, e.g. tanh(·), W
and U are parameter or weight matrices, and b is a bias vector. An RNN iterates
over time steps t, updating its hidden state vector h every time. The input at
each step is a symbol, i.e. in language modeling a single token. The input xt is
also a real vector, stored in a column of a so called embedding matrix M ∈ Rk×|V |,
where k is a free parameter and |V | is the size of the used (őxed) vocabulary. The
example is extracted by multiplication with a one-hot (column) vector o which is
non-zero only at a single index i, 1 ≤ i ≤ |V |:

xt = Mo. (2.38)

The prediction at time step t is carried out by linearly projecting the current
hidden state to an intermediate vector with dimensionality 1 × |V |, and őnally
applying a soft max operation to generate a probability distribution over vocabulary
entries:

qt = softmax(Vht + b), (2.39)

where

softmax(v) =
exp(vj)

∑

j exp(vj)
. (2.40)

The prediction can then simply be calculated via argmaxj qt,j , where qt,· can
be interpreted as probability distribution. The probability of a sequence [s1, . . . , si]

25In practice there is a length limit imposed due to bounded memory.
26In practice there are problems with overly long sequences, partially caused by the training

method.

28

2.2 Statistical Machine Translation

is thus given by

p(si|s1, . . . , si−1) =
∏

k

qi,j . (2.41)

Neural networks are often trained by stochastic gradient descent (SGD) using the
back-propagation algorithm [Rumelhart et al., 1988] for efficiently computing the
gradients given a loss function. The process in an RNN is however more elaborate,
since it involves repeated function applications instead of just a single one. Mozer
[1989] presents a variant of the original back-propagation algorithm that handles
this structure by unfolding the network (back-propagation through time).

The training signal is given by deőning a suitable loss function, which in language
modeling can simply be the negative log likelihood27:

lθ(X) = −
1

|X |

∑

x∈X

log pθ(x), (2.42)

where θ is the set of all parameters of the model, and X is a set of training
data. The loss function is minimized during training until a stopping criterion is
met. A language model based on an RNN as deőned here can also be found in
[Kalchbrenner and Blunsom, 2013; Mikolov et al., 2010].

Similar models can be effectively integrated into PBMT, see e.g. [Devlin et al.,
2014], but for using them as a stand alone translation more work has to be done.

Chrisman [1991], Kalchbrenner and Blunsom [2013], Cho et al. [2014] and
Sutskever et al. [2014] proposed the encoder-decoder approach to model translation.
An instance of this type of model uses recurrent neural networks, as outlined above,
combing an encoder RNN, providing a őxed vector representation c of the source
sentence, and a decoder RNN, conditioned on both its own history and c provided
by the encoder. Encoder and decoder are both RNN language models as described
before, but the decoder RNN receives the last encoder state as additional input in
each time step:

ht = σ(f(yt,ht−1, c)), (2.43)

the conditional distribution is changed accordingly.28

The full network is trained on parallel sentence pairs, the loss is however only
deőned on the target side, since the encoder RNN has no individual outputs, and
only serves to provide context for the decoder RNN. Both encoder and decoder are
trained jointly given the target-side loss.

27Which is closely related to the cross-entropy loss.
28In practice, the context vector is concatenated with the hidden state before applying the

softmax operation.

29

2 Background

For satisfying performance of the proposed models, several modiőcations are
advisable: The simple RNN suffers from the vanishing gradients problem due to the
deep structures in back-propagation through time. The long-short term memory
RNN [Hochreiter and Schmidhuber, 1997] alleviates the problem by explicitly
modeling an adaptive memory. Gated recurrent units [Cho et al., 2014] have similar
qualities while being somewhat simpler to implement.

Bahdanau et al. [2014] introduced a learned soft alignment model to NMT by
replacing the context vector by a richer, target-context dependent representation:
Given a decoder’s hidden state at time t, ht, and a vector of encoder hidden states
[h′

1, . . .h
′
s] (s being the length of the source sequence) a so-called attention model

calculates a vector αt, with elements αt,1, . . . , αt,j given by

αt,j = g(h′
j ,ht), (2.44)

where g(·) is an arbitrary differentiable function returning a single real number,
which can be interpreted as a score29. αt is normalized by applying the softmax
function αt = softmax(αt).

Since each hidden state of the encoder only summarizes the sequence up to that
point, Bahdanau et al. [2014] propose to use a bidirectional RNN [Schuster and
Paliwal, 1997] for encoding both left and right contexts at each position.

Translation in NMT can be trivially carried out by modifying the training
procedure to emit the tokens with maximum conditional probability in Equation
2.39, repeating the process until an end-of-sentence token30 is emitted. The őnal
translation is then simply the concatenation of emitted tokens. This is referred
to as greedy decoding, since all tokens are the best possible local choices at each
time step of the translation process. Alternatively, a simple variant of the beam
search algorithm can be employed, considering b words at each time step of the
translation process: The algorithm always maintains b partial hypotheses (preőxes
of translations) at each time step, discarding other possible continuations. If any
of the b best translations is őnished, i.e. the last emission was an end-of-segment
token, b is reduced by one, and the process is continued until b is 0. This is őrst
described by Sutskever et al. [2014] for NMT.

Variants31 of this general architecture are performing favourably compared to
traditional statistical machine translation [Luong and Manning, 2015; Bentivogli

29Bahdanau et al. [2014] propose a multi-layer perceptron — Neubig [2017] list a number of
varieties.

30Parallel data for NMT models is augmented to include a distinct end-of-segment token in source
and target segments for being able to explicitly learn appropriate sentence lengths.

31The attention models defined in Neubig [2017] and Bahdanau et al. [2014] differ significantly in
how the context vector ct is applied.

30

2.3 Evaluation of (Machine) Translation

et al., 2016b; Wu et al., 2016; Bojar et al., 2017] inter-alia.

A major caveat in NMT is the őxed vocabulary, which cannot be altered after
a model is trained. This poses issues for practical applications, for example in
PE tasks where users may input unknown words. This can however be alleviated
by using vocabulary based on sub-words, as described by Sennrich et al. [2015] or
previously Schuster and Nakajima [2012]. The sub-word vocabulary ideally includes
the complete alphabet of the target language to be able to reliably back off. But
the general problem remains, since there are much more possible atomic symbols
than could possibly be őtted in a őxed-size vocabulary, e.g. the ever extended
number of emojis in the Unicode character coding standard [Unicode Staff, 1991].

2.3 Evaluation of (Machine) Translation

Evaluation is a topic of great importance in ML and NLP in particular. Aside
from the trivial 0-1 error or other related error measures, evaluation measures in
information retrieval (IR) are non-trivial due to the complexity of the task, e.g.
due to the more complex task of comparing rankings, or other structures such as
trees.

However, in NLP and also MT there is another layer of complexity in evaluation:
As language is generative, ambiguous and inőnite in some ways, there is hardly
a single true reference to compare to available. In the comparatively simple task
of part-of-speech (POS) tagging this is easy to demonstrate: In Figure 2.6 there
are two equally correct labels for the word łduckž (noun and verb). In evaluation
the correct sequence entirely depends on the context, which may or may not be
given. Evaluation measures in NLP should be able to account for that, as simple
measures based on 0-1 error may not give any meaningful insights.

This is more pronounced in MT where the bilingual aspect makes matters more
complicated, as there are a huge number of equally correct translations for every
non-trivial sentence, which possibly differ only in nuances. However, most auto-
matic evaluation of MT is done in the context of a single or a couple of reference
translations per segment or sentence32, which are considered the ground truth.
All evaluation measures arguably try to measure some form of semantic equivalence.

In this section we will őrst present the issues that arise in human evaluation
of translation, and then present the methods we use for automatically evaluating
translation outputs, and discuss their correlations with human judgments. Lastly
we discuss methods for comparing translation outputs as well as providing statistical

32We will use these terms interchangeably, as the language pairs examined in this thesis have
identical definitions of sentence boundaries and we are not concerned with translation in wider
contexts than single sentences.

31

2 Background

We saw her duck .
Interpretation #1 Pronoun Verb Pronoun noun Punctuation
Interpretation #2 Pronoun Verb Pronoun Verb Punctuation

Figure 2.6: POS-tag sequences for two interpretations for the English sentence łWe
saw her duck.ž.

signiőcance for comparison of results.

2.3.1 Human Evaluation

Manual human evaluation by experts is the gold-standard for evaluation in MT.
This type of evaluation is most commonly split into two separate ratings: adequacy
and fluency, as proposed in the ALPAC report by Pierce and Carroll [1966]33,
and also later in the context of the DARPA machine translation initiative [White
et al., 1994].

The question for the adequacy of a translation seeks to assess whether, and to
what extent the meaning of a source sentence is properly reŕected in a proposed
translation. This implies that an assessor is able to to understand both source and
target languages, and is also able understand the subject matter. Fluency, on the
other hand only answers the question whether a translation is a valid utterance in
the target language, in terms of grammatical correctness, proper choice of words,
spelling and other more stylistic aspects. Evaluation for ŕuency can be assessed by
monolingual evaluators, possibly without domain knowledge. Both adequacy and
ŕuency evaluations are typically carried out on a per-sentence basis. Ratings are
assessed by using a coarse ordinal scale [LDC, 2005], or continuous scale [Graham
et al., 2013a].

While the adequacy-ŕuency human evaluation is a preferred type of human
evaluation, it is costly to carry out as bilingual experts need to be recruited34.
Additionally, ŕuency seems to be a subjective measure, as low inter-annotator
agreement is common [Graham et al., 2013b] and it is overall difficult to assess in
a consistent manner [Koehn and Monz, 2006a; Turian et al., 2006; Denkowski and
Lavie, 2010]. However, since ŕuency can be assessed by monolingual non-experts,
successful methods for sourcing assessments from non-experts have been developed
[Graham et al., 2013a; Callison-Burch, 2009].

A method for cost- and time-efficient human evaluation to contrast MT systems
can be carried out by collecting pairwise preferences and establish a ranking

33In the report, fluency corresponds to intelligibility, and adequacy to fidelity.
34This constraint can be relaxed if reliable reference translations are available.

32

2.3 Evaluation of (Machine) Translation

[Sakaguchi et al., 2014; Bojar et al., 2014a]. Even simpler methods have been
proposed, e.g. retrieving human assessments of acceptability by per-sentence
questionnaires with yes/no responses [Callison-Burch et al., 2008].

Other types of human evaluation include error analysis [Stymne and Ahrenberg,
2012; Koponen, 2010; Vilar et al., 2006] and measuring post-editing effort [Snover
et al., 2006; Bentivogli et al., 2016b].

Overviews of human evaluation for MT can be found in [Graham et al., 2017],
[Han and Wong, 2016] and [Uszkoreit, 2007].

2.3.2 Automatic Evaluation

Due to the challenges of human evaluation, as well as the fact that development of
MT systems requires repeated evaluation of translation quality, a wide range of
automatic measures for automatic evaluation of MT outputs have been developed.

Banerjee and Lavie [2005], propose a number of properties an automatic measure
should exhibit: a) Sensitivity to differences in quality to successfully discriminate
similar but sufficiently different systems while consistently identifying similar results;
b) Reliable results over a wide range of data and system setups, producing similar
results on similar setups; c) Correlation with human judgments. Su et al. [1992]
additionally suggest low cost and high speed of computation as desirable properties
of an automatic evaluation metric.

The most widely used metrics can be assorted in two classes: edit-distance
based, measuring lavishness of string transformations, and precision-based. In the
following we present the predominant approaches for both directions, which are
employed in our work.

2.3.2.1 Edit Distance-Based Evaluation

The most basic evaluation distance-based metric applicable to machine translation
evaluation is word error rate (WER), proposed by Su et al. [1992], which is a
variant of the Levenshtein distance [Levenshtein, 1966] operating at word-level
instead of string level. By deőnition it is the smallest possible number of operations
to transform an array of words H (the hypothesis) into another array of words R
(the reference). Possible operations are insertions I, deletions D, and substitutions
R (replacements):

WER(H,R) = max
I+D+R

I +D +R

N
, (2.45)

where N is the number of words in the reference translation. If there are several
reference translations, the average number of words is used in the denominator, and
the minimal number of edits to arrive at any reference is used in the enumerator.

33

2 Background

Note that all operations have a single shared cost of 1.

A variant of WER, which is more common in MT evaluation is presented in
[Snover et al., 2006] and referred to as translation error rate (TER)35:

TER(H,R) = min
I+D+R+S

I +D +R+ S

N
, (2.46)

where I, D, R and N are consistent with their deőnitions in WER. However, a
overly harsh reduction of scores due to simple displacement of groups of words is
prevented by introducing shifts S as another class of possible editing operations. It
allows to move groups of words at once, incurring only the cost of a single operation,
instead of two operations per word (deletion and insertion for shifting a single
word).

2.3.2.2 Precision-Based Evaluation

Precision and recall are fundamental metrics in many applications of NLP. However,
without modiőcation they can be non-informative in MT, as their naïve application
ignores word order, which is inarguably not negligible when trying to measure
semantic equivalence. To account for word order one may extract ordered subsets
of words from both hypothesis and the reference translation, i.e. N -grams, and
calculate precision relative to these subsets. The BLEU36 score [Papineni et al.,
2002] implements just that. For each N we have:

qN =

∑

g∈nN (c)

δr(g)

|nN (c)|
, (2.47)

where c is a candidate translation, nN (c) is the set of N -grams of length N in c,
and δr(g) is 1 iff the N -gram g also appears in the reference translation r. The
count in the enumerator is clipped by the maximum number that each N -gram
appears in the reference translation, to not reward nonsensical repetitions.

These single precision scores are summed up to some maximum N , which is
commonly set to 4.

The original BLEU score is deőned on a corpus basis, i.e. summing over all
sentences in a given corpus C:

QN =
∑

c∈C

qN . (2.48)

35TER was initially proposed as a metric for estimating technical translation effort in post-editing.
36Bilingual Evaluation Understudy

34

2.3 Evaluation of (Machine) Translation

Different N are combined in a geometric average37:

P =

(
N∏

i=1

Qi

) 1

N

. (2.49)

As only using precisions would in practice possibly skew the score to prefer
shorter translations, a brevity penalty is introduced to penalize hypotheses that are
shorter than the reference38:

BP =

{

1 if |c| > |r|

exp(1−|r|/c) else,
(2.50)

where |c| is the length of the candidate translation, and |r| the length of the
reference.

The total score is then simply calculated as the product of the precision term
and the brevity penalty:

BLEU = BP× P. (2.51)

Closely related to the BLEU score is the NIST translation evaluation metric
[Doddington, 2002], which additionally includes a term to weigh łinformativenessž
of N -gram matches, weighing less frequent N -grams more in the precision calcula-
tion. Agarwal and Lavie [2008] propose a variant of BLEU allowing fuzzy N -gram
matches.

Another precision-based measure is the METEOR score proposed by Lavie et al.
[2004], which is presented as an alternative to BLEU with directly taking recall
into account. It does so by generating a one-to-one alignment at the unigram
level, calculating precision, recall and őnally an F -score by counting correct and
incorrect alignment links. Multiple references are handled by calculating the scores
separately and taking the best scoring alternative. Alignment is carried out in
several stages, which includes alignment of word stems and other word forms. The
őnal score includes a factor for preferring longer N -gram matches. Note that the
score requires language-speciőc resources for the alignment.

It is important to note that the BLEU and NIST metrics are designed to evaluate
performance on the corpus level, which poses special challenges when sentence-wise

37Note that the geometric average is zero if any of the factors is 0, which makes the BLEU score
problematic for sentence-level scoring.

38The alternative, recall (and in combination with precision F -score) can not be directly applied
here, since the BLEU score is designed to support multiple reference translations, and recalling
translation candidates for the same source span should not be rewarded. METEOR handles
this issue with the alignment.

35

2 Background

scores are needed. The BLEU score can be used to score with multiple reference
translations per candidate by altering the clipping procedure to use the maximum
number of occurrences of any N -gram in any reference, and by using average
lengths when calculating the brevity penalty.

2.3.2.3 Correlations with Human Judgments

Correlation with human judgments provides the vital credibility of automatic
measures for evaluation of translation quality.

Papineni et al. [2002] show good correlations between BLEU and document-
level adequacy (rated by bilinguals), as well as ŕuency ratings on a scale of one
to őve, using a range of correlation coefficients (Pearson Correlation [Pearson,
1895], Spearman rank Correlation [Spearman, 1904], Kendall’s τ [Kendall, 1938]).
Doddington [2002] also show good correlations with document-level adequacy,
ŕuency and informativeness39 for the closely related NIST score. Furthermore,
good correlations (Pearson and Spearman correlation coefficients) with human
judgments of adequacy and ŕuency are shown for the TER score and some variants
in [Snover et al., 2009].

Banerjee and Lavie [2005] present a study on correlations of a number of eval-
uation metrics including the BLEU and NIST scores, correlating segment-level
measurements to human judgments of adequacy and ŕuency (on a scale from one
to őve) with the Pearson correlation coefficient. Tan et al. [2015] discuss a disparity
of the BLEU score compared to human judgments (assessed by pairwise prefer-
ences of non-experts), which primarily arose from BLEU being overly sensitive to
lexical choices. The study in [Agarwal and Lavie, 2008] suggests the same, showing
improved correlations by allowing more ŕexible N -gram matches. Callison-Burch
et al. [2006] also suggest that not being able to employ ŕexible matching, word-level
importance weighting, and omitting recall renders the BLEU score insufficient as
an evaluation metric. They also show low correlations with human judgments in a
ŕuency-adequacy study, again with ratings from one to őve.

Despite these issues, the BLEU score has proven to reliably discriminate better
from worse translation systems in a wide range of evaluations, e.g. [Bojar et al.,
2017], [Nakazawa et al., 2014] or [Cettolo et al., 2014b], inter-alia. Furthermore, the
score has been able to precisely reŕect advances in machine translation technology,
e.g. improvements by NMT applied to spoken language translation [Luong and
Manning, 2015; Cettolo et al., 2015] or translation of news text [Sennrich et al.,
2016; Bojar et al., 2016]. Bentivogli et al. [2016b] also highlight the advancement of
MT technology with neural machine translation by reporting BLEU scores, while

39Informativeness is measured by the ability to answer a set of questions based on a system’s
translations alone.

36

2.3 Evaluation of (Machine) Translation

providing an in-depth error analysis showing the superiority of the neural systems,
which agrees with the automatic evaluation.

2.3.2.4 System Comparison & Significance Testing

Because human evaluation is usually carried out by a number of people, it can be
readily veriőed with inter- and intra-annotator agreements, see e.g. the methods
for pairwise judgments in [Callison-Burch et al., 2011a]. But automatic evaluation
metrics as described above, only provide a single numeric assessment of the quality
of the translations, which raises doubts about how reliably outputs of different
machine translation systems can be compared. A telling example for this behavior
is the BLEU score, but is also applicable to most other automatic scores: It is
possible, though unlikely, that two systems may produce a very similar or even
identical scores on the same test set, but perform fundamentally different on
different parts of the test set [Berg-Kirkpatrick et al., 2012]. This is expected and
due to the factorization of the score, counting N -grams and measuring relative
length differences.

To assess the true magnitude of score differences40 of automatic evaluation
metrics, appropriate significance tests can be used, which provide p-values and
conődence intervals for score differences. Two tests are widely used for system
comparison in MT: the two-sided bootstrap re-sampling test [Koehn, 2004b], and
the approximate randomization test [Riezler and Maxwell, 2005]. The bootstrap
test in principle explores whether the score difference between two systems holds
true on repeated bootstrap samples41 [Efron, 1992]. The test assumes that the
samples represent the true population of the data. In contrast, the approximate
randomization test does not make any assumptions, is trivial to implement, and in
practice tends to perform similarly to tests based on bootstrap samples [Graham
et al., 2014].

The stratiőed approximate randomization test42 [Clark et al., 2011], as depicted
in Algorithm 1, works by repeatedly calculating the difference in scores with some
translations swapped between the two systems and checking whether the difference
agrees with the original statistic. For this type of test, the Null hypothesis is that
the two systems are actually not different, i.e. the score difference is only by chance.
The Null hypothesis is rejected if the returned p-value of Algorithm 1 is lower or
equal than a pre-determined threshold, e.g. 0.05 with a conődence interval of 95%.
This is the case if the absolute values of the score differences are often greater than

40Some significance tests can also be used to assess the output of a single system, e.g. by
re-sampling.

41Random permutations, with replacement, of the translation outputs of two systems.
42The originally proposed application of the approximate randomization test for MT evaluation

of [Riezler and Maxwell, 2005] swaps items on the level of the evaluation metric, e.g. N -gram
matches for the BLEU score.

37

2 Background

the difference of the actual score when swapping translations, which allows for the
interpretation that the observed difference likely occurred by chance. The test
is approximate in that sense that it does not consider all possible permutations
(2 size−of−test−set), but rather a őxed number, typically ≥ 1, 000.

Algorithm 1 Stratiőed approximate randomization test for machine translation
system comparison. Inputs: Test set, number of random restarts r, system outputs
A and B, and evaluation metric. Algorithm adapted from [Riezler and Maxwell,
2005].

Compute actual score difference d← |Evaluate(A)− Evaluate(B)|
c← 0
for Random restarts 1 . . . r do

for all Segments of test set s do

Swap translations outputs for segment s of system A and B with proba-
bility 0.5

end for

Compute pseudo-statistic d′ ← |Evaluate(A′
r)− Evaluate(B′

r)|
if d′r ≥ d then

c← c+ 1
end if

end for

Return p← (c+ 1)/(r + 1)

While the approximate randomization test was found to be robust against the
for research arguably more relevant type I errors43 [Riezler and Maxwell, 2005], for
some setups is has been shown that its power can be limited [Graham et al., 2014]
compared to human judgments.

However, as Sùgaard et al. [2014] and Berg-Kirkpatrick et al. [2012] show,
signiőcance tests in NLP are very sensitive to sample size and domain shifts, which
may require very low p-values or tests on a variety of data sets to provide reliable
results. Regarding length of test sets in MT evaluation, Estrella et al. [2007] show
that at least about 500 segments are needed for meaningful results.

2.4 Linguistic Materials for Machine Translation

To provide meaningful results for the hypotheses in this work, we consider a
wide range of linguistic materials for training and evaluation, i.e. parallel and

43Type I errors being the incorrect rejection of the Null hypothesis, i.e. deeming two systems
outputs to be significantly different when they are actually not, and type II errors being the
incorrect acceptance of the Null hypothesis, i.e. deeming two system outputs not significantly
different when they actually are.

38

2.4 Linguistic Materials for Machine Translation

monolingual data from a wide range of domains.

2.4.1 Data Domains & Characteristics

A domain in NLP is a somewhat fuzzy concept. We follow a general classiőcation
as disseminated for example by van der Wees et al. [2015]: On the top-level, the
domain of a text refers to its topic and genre. The topic of a text signiőes the
general subject, while the genre can be deőned by every feature of a text that is not
due to its topic. This can include the text’s formal structure and the style its been
written in. The most prominent effect of a topic is its induced vocabulary. If a
topic is known or can be inferred otherwise, it can be used for resolving ambiguity,
i.e. provide a means for domain adaptation [Hasler et al., 2014].

Domain adaptation of MT systems is a well known problem, but in SMT, e.g.
phrase-based or hierarchical phrase-based MT, there is no single straight-forward
way to perform domain adaptation, since these models consist of a number of sub-
models which are trained in different ways with different objectives (i.e. translation
and language models). The generative models can be adapted by including domain-
speciőc data in the training, or be made more robust by smoothing techniques. The
weights of the discriminative log-linear model can be straight-forwardly adapted
by training on in-domain data. This can also be done with NMT, in this context
often referred to as fine-tuning.

We will now discuss the types of text used in this work.

2.4.1.1 News-Style Text

Due to its abundance on the internet, news text is a widely used resource for MT,
which is also employed in MT evaluation tasks such as the Conference on Machine
Translation (WMT44) [Koehn and Monz, 2006b; Bojar et al., 2017]. A news text
naturally covers a diverse set of topics, but mostly follows a formal style, which
depends on the author and the context. Extraction of such data relies on the
availability of multi-lingual news outlets. An example are the test sets released
for the WMT evaluations, see e.g. [Bojar et al., 2017], and the news-commentary
corpus45.

News articles are written by a manifold of authors and generally do not follow a
formal structure. The virtually unlimited range of topics appearing in this type of
data adds some difficulty for translation, due to the possible topic/style mismatch.

44Formerly known as the Workshop on Machine Translation.
45http://www.casmacat.eu/corpus/news-commentary.html

39

http://www.casmacat.eu/corpus/news-commentary.html

2 Background

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

Table 2.1: Top-level sections of the International Patent Classiőcation (IPC).

2.4.1.2 Patents

Patent translation is a very active őeld in both research and practice, partly due to
the inherent internationality of the patent process: Patents for the European Patent
Office (EPO) have to be either submitted in one of the three official languages
(English, French or German), or a translation into one of these languages has to be
provided by the applicant46. When a patent is granted, a translation has to be
provided in an official language for every one of the designated countries [WIPO,
2014], which further increases the translation expenditure. Since patent translation
requires a lot of expertise, the process is expensive, and thus the incentive for
research towards automation is great.

First efforts for the application of MT began in Europe the 1980s [Johnson
et al., 1985], and have continued ever since [Orsnes et al., 1996; Tinsley et al., 2010;
España Bonet et al., 2011]. International research interest in MT for patent transla-
tion is also high [Goto et al., 2013; Nakazawa et al., 2016] inter-alia, notably in Asia.

Patents are a viable application of automatic translation, since they follow a
strict structure: Patents are divided into four sections: title, abstract, background
descriptions (descriptions for short), and claims, each of which can be considered as
a distinct genre of text. While abstracts and descriptions allow free-form text, the
title is naturally constrained and the claims follow a very strict form: As denoted in
[WIPO, 2014] and further discussed in [Fuji et al., 2015], a claim has three distinct
parts, the preamble, the transitional phrase (mostly a verb) and lastly the body of
the claim. Due to these constraints, claims can be considered as non-natural or
controlled natural language. Structures like this can easily learned by MT systems,
which is advantageous for the application of CAT.

Besides the genre, patents cover a vast amount of different topics, which are
manually sorted in a number of content classes, as depicted in Table 2.1. This
46http://www.epo.org/law-practice/legal-texts/html/caselaw/2016/e/clr_iii_f_1.htm

40

http://www.epo.org/law-practice/legal-texts/html/caselaw/2016/e/clr_iii_f_1.htm

2.4 Linguistic Materials for Machine Translation

is only the classiőcation on the topmost level Ð patents are sorted into a very
őne-grained classiőcation hierarchy.

Overall, the speciőcs of patent translation can lead to very good automatic
translation results by exploiting the idiosyncrasies of patent text. For our work
we use data from two different corpora, Japanese-English [Utiyama and Isahara,
2007] and German-English data [Wäschle and Riezler, 2012b,a]. Main difficulties
in translation of patents include very specialized vocabulary, cross-references (in
claims), overly long sentences, and references to őgures similar to captions, but
found in running text.

2.4.1.3 Legal Texts

The parallel data from the legal domain which is publicly available mostly consists of
multi-lingual actual legislation (motions, laws, amendments, and regulatory texts),
as well as political speeches, discussions and explanations around legislation. Laws
and regulations, similar to patents, follow a strict form. Speeches and discussions,
while being formal, not necessarily follow a such strict form. Naturally, this type
of data covers a wide range of topics, such as economic and trade, social issues,
science and education, or sports, amongst others.

For our work we use to different corpora extracted from publications of the
European parliament: The Europarl corpus [Koehn, 2005], consisting of texts
from the proceedings of the European Parliament, and verbatim reports of the
plenary sessions of the European Parliament, i.e. speeches and discussions around
legislation [Hajlaoui et al., 2014]. The corpus is available in all of the official
languages of the European Union, but we only use the English-German parts.
Secondly, we use the English-Italian parts of the JRC-Acquis data [Steinberger
et al., 2006], consisting of legislations concerning the common rights and obligations
of European member states.

Legislation in general is a difficult subject matter, and the wide range of topics
and genres is a further challenge.

2.4.1.4 Manuals

Manuals are a another domain using somewhat constrained language, and is often
readily available in multiple languages. In this work, we use software manuals
and documentation from the OPUS corpus [Tiedemann and Nygaard, 2004] for
the English-Italian language pair. The data consists of a number of manuals for
software products, including documentation of a word processor, a reference for
a user interface library, and documentation of a programming language. The
data includes a variety of types of text: titles, content listings, descriptions and
deőnitions.

41

2 Background

2.4.1.5 Spoken Language

Translation of spoken language is challenging for a number of reasons: It may
contain spontaneous speech (which can render it challenging to identify individual
segments), and it requires at least one further complex pre-processing step in the
form of either manual transcription or automatic speech recognition, which are
both error-prone tasks. Such data may also contain speech disŕuencies that may
cause issues for non-specialized translation systems. Furthermore, the number of
topics in this type of data is virtually unlimited.

We use English-German and English-Russian data distributed for the Interna-
tional Workshop on Spoken Language Translation (IWSLT) [IWSLT, 2004]. The
data consists of transcribed and translated public talks. Since the data is produced
(transcribed and translated) by a number of volunteers, the quality of the data may
vary, since there is no standardized way for handling disŕuencies, or the sometimes
occurring use of informal language.

2.5 Optimization in Machine Translation

Optimization has many applications in SMT: All sub-models included in the
log-linear model are optimized in some special manner Ð phrase translation
probabilities, N -gram language models, as well as reordering models are estimated
by optimizing maximum likelihood objectives, commonly by relative frequency
estimation, seeking an in some sense optimal distribution over sequences of tokens
or trees in context. Finally, the decoding algorithms, mostly instances of dynamic
programming, solve optimization problems in the form of argmax operations.

In our work however, we focus on őnding in some deőned sense good and ulti-
mately robust weights for the linear model, which is used for őnding appropriate
translations. A variety of methods have been proposed for learning suitable weights,
but methods that optimize directly towards evaluation have naturally been the
most successful approaches overall. This type of optimization is most commonly
referred to as parameter tuning . The term originates from being easily able to
őne-tune a fully trained model to a new domain by training on a in relation small
number of additional in-domain segments.

This section covers related work to our own approach in SMT tuning: First,
general methods of discriminative training for SMT are discussed. We then cover
the őrst tuning strategy ś direct error minimization, namely Minimum Error Rate
Training. What follows is an introduction and presentation of related work of tuning
methods originating from different directions, including structured prediction and
ranking.

42

2.5 Optimization in Machine Translation

2.5.1 Digression: Discriminative Training in Statistical Machine Translation

As introduced in Section 2.2.1, the distribution P (E|F) can be directly learned in
a maximum entropy framework, or log-linear model. Models that directly estimate
P (E|F) given some training data can be characterized as discriminative models. In
this section we will shortly discuss how to train these types of models, and explain
different approaches to discriminative training in SMT.

Och and Ney [2002] propose the optimization of the parameters of the log-linear
model by őnding a parameter vector w (also referred to as the weight vector) which
maximizes the log-likelihood of a given parallel training corpus with N examples,
by (omitting vector notation for f and e):

w∗ = argmax
w

{
N∑

i=1

log pw(ei|fi)

}

. (2.52)

This convex optimization problem can be approached with gradient descent,
however, since Equation 2.15 involves an intractable normalization term, the
approach requires approximating the space of possible translations47. A similar
proceeding, which however seeks to do without the maximum approximation, is
presented by Blunsom et al. [2008] which explicitly include derivations in their
model, while also maximizing a log-likelihood objective. Discriminative models,
for example the perceptron algorithm [Rosenblatt, 1958], enable efficient reranking
approaches [Shen et al., 2004], in turn enabling the use of complex feature sets,
which can be used in the őrst pass of decoding. Wellington et al. [2009] present a
boosting procedure for tree-structured translation models.

In another line of work, Tillmann and Zhang [2005] present a discriminatively
trained translation model, modeling local phrase reordering decisions as a block
sequence model, utilizing a log-linear model and maximizing likelihood of the
training data. Serrano et al. [2009] and Wang et al. [2007] show how the discrimi-
native kernel regression framework can be used for modeling in machine translation.

However, in traditional SMT48, methods directly49 optimizing the evaluation
metric have been shown to outperform discriminative approaches maximizing
the likelihood of the training data: Tillmann and Zhang [2006] show improved
results combining the method of Tillmann and Zhang [2005] with a discriminative
model, which is trained to prefer high quality translations. Inŕuentally, Och [2003],

47Additionally, Och and Ney [2002] introduce the maximum approximation, i.e. maxP (E,A|F) :=
maxP (E|F).

48In NMT, maximizing log-likelihood is the state-of-the-art, but minimizing the expected risk
[Och, 2003; Smith and Eisner, 2006; He and Deng, 2012] can also be used to directly optimize
an evaluation metric such as BLEU [Shen et al., 2015].

49Direct in the sense of being related to the objective of the optimization.

43

2 Background

presents an algorithm to directly learn a log-linear model’s weights to optimize
the evaluation metric. Despite these results, [Shen and Joshi, 2005] show that
in reranking, a likelihood based objective can be effective, and improvements in
training performance positively correlate with the evaluation metric.

2.5.2 Direct Error Minimization

In direct error minimization methods, the goal is to conductively optimize the
gold-standard evaluation metric of interest, e.g. TER or BLEU scores, on a given
set of training examples. The respective objective for optimizing the log-linear
model can be formulated as follows:

w∗ = argmax
w

{
n∑

i=1

g

(

e∗i , max
j∈Y(fi)

pw(ei,j |fi)

)}

, (2.53)

where g(·) is the evaluation metric, i iterates over the indexes of the training
data with n examples, Y(f) is the (indexed) set of translation hypotheses for a
given source segment f , and e∗i is the reference translation for example i.50

Formulated as a loss function, to minimize the true error:

Ltrue = −
n∑

i=1

g

(

e∗i , argmax
(e,h)∈Y(fi)

m(fi, e, h)

)

, (2.54)

where m(·) represents the model score of a translation hypothesis, i.e. ⟨w,φ(f, e, h)⟩,
for a feature representation derived from source f , target e with derivation h. The
derivation h corresponds in word-based models to the word alignment, in phrase-
based models to a phrase segmentation, and in hierarchical phrase-based models
to the co-aligned source and target parse trees.

While TER can be directly optimized in this framework, the BLEU score, being
deőned on the full corpus, is not evaluable for isolated hypotheses, which either
calls for a sentence-wise approximation, or specialized optimization procedures.
The predominant approach for directly optimizing BLEU is described by Och [2003].
Other direct approaches include work by Chung and Galley [2012] and Erdmann
and Gwinnup [2015].

2.5.2.1 Minimum Error Rate Training

Minimum error rate training (Mert), as described by Och [2003] aims to directly
optimize the true loss (Equation 2.54) on a set of translation hypotheses, e.g. a

50From now on we will omit the vector notation for e and f if the context is unambiguous.

44

2.5 Optimization in Machine Translation

set of k-best lists of a training set51. Given an initial or previous model, a single
iteration of the Mert procedure őrst produces a list of k-best translations for each
input of the training data, annotated with model scores and feature values.

Then, Mert, in its simplest form, optimizes the weight of each feature in a
linear model w separately, as a variant of Powell’s method [Powell, 1964]: An naïve
modus operandi for this single-weight optimization would utilize a grid search,
reranking all lists with the new weight and observing the global evaluation score.
This is generally infeasible due to the large number of 1-best allocations. Instead,
in Mert, an efficient way of őnding the optimal weight for a given feature for a
őxed set of k-best lists in utilized: While other parameters are őxed, the model
score of all entries of every k-best list can be represented as follows (assuming only
unique entries in the k-best lists):

⟨λ,φ′(f, e)⟩+ γϕ′′(f, e), (2.55)

where φ′ is the feature representation using only the őxed features, λ are the
weights for the őxed features, γ is the weights for the current active feature, and
ϕ′′ the respective feature value. Each hypothesis can thus be represented as a
line, with slope ϕ′′(f, e) and intercept ⟨λ,φ′(f, e)⟩. This formulation allows to
efficiently determine an optimal global weight for a given feature by generating
the upper envelope (UE) of the linear model for each k-best list [Macherey et al.,
2008], providing an exhaustive representation for all γ ∈ R:

UE (Y(f)) = max
e∈Y(f)

{λ,φ′(f, e)⟩+ γϕ′′(f, e) : γ ∈ R} . (2.56)

Since the upper envelope is piecewise linear and convex, it enables to efficiently
determine a őnite number of values for γ, namely those where the global eval-
uation metric actually changes its value. With this insight, a globally optimal
score for each feature can be efficiently determined. The process is iterated for a
number of epochs, re-decoding the training data each time with the new parameters.

While the algorithm is capable to optimize the weights of a typical SMT system,
i.e. less than 30 features, it does not scale to larger feature sets, e.g. when using
sparse, lexicalized features, see e.g. [Hopkins and May, 2011].

Mert is extensively studied: The algorithm can be extended to use a larger
portion of the search space, i.e. lattices encoding source segmentation in phrase-
based MT [Macherey et al., 2008; Galley and Quirk, 2011], or hypergraphs encoding
tree-structured derivations in syntax-based MT [Kumar et al., 2009], including more
efficient approaches to compute the upper envelope [Sokolov and Yvon, 2011; Dyer,

51Even with a small data set and reduced search space, finding optimal weights that maximize the
global BLEU score on this sample is still a daunting task, as there are Nk 1-best allocations
to consider, N being the size of the training data.

45

2 Background

2013]. Regularization can also be employed [Cer et al., 2008]. Other aspects of the
algorithm, considering random restarts [Moore and Quirk, 2008], multi-dimensional
optimization [Galley et al., 2013], or stability of the resulting weights [Foster and
Kuhn, 2009; Clark et al., 2011] have also been thoroughly explored.

Note that, since BLEU is non-differential and piecewise linear [Och, 2003; Pap-
ineni et al., 2002], it cannot be optimized directly as some metrics in IR (cf. Section
2.6.1.2). While Mert can optimize the gold-standard score for a given set of k-best
lists, it is no guarantee whatsoever that it is a global optimum, since the k-best
lists depend on the weights.

2.5.3 Structured Prediction

In general ML, when there are complex output spaces Ð which is commonplace in
MT Ð a different type of learning algorithms can be used compared to the ones
designed for more simple tasks such as (binary) classiőcation. Structured prediction
can be characterized by an antagonism [Daumé, 2006]: While each output y ∈ Y
decomposes into an ordered set of states encoded by variable sized vectors, the
losses or error metrics do not decompose in the same way, but are evaluated for
the full structure. Besides MT, typical applications include other tasks in NLP,
such as tagging, parsing or more general sequence learning tasks52. Structured
prediction problems are abundant in NLP.

The structured prediction framework enables the use of expressive features deőned
on structured inputs and outputs, and allows for efficient online learning algorithms.

A fundamental algorithm in structured prediction is the structured perceptron
[Collins and Duffy, 2002; Collins, 2002], a linear model parametrized by a weight
vector w, as depicted in Algorithm 2.

Algorithm 2 Structured perceptron. Inputs: Learning rate η, set of training
examples with size N . Algorithm adapted from [Collins and Duffy, 2002].

for i← 1 . . . N do

ŷ ← argmaxy⟨wi,φ(xi, y)⟩
if ŷ ̸= y∗ then

wi+1 ← wi + η (φ(xi, y
∗
n)− φ(xi, ŷ))

end if

end for

Return wN+1

The algorithm closely resembles the original perceptron algorithm for classiőca-
tion and has the same convergence properties, but the condition for an update is
52There are also notable exceptions of this classification, such as POS-tagging where the natural

loss is actually decomposable.

46

2.5 Optimization in Machine Translation

different: An update is performed iff the 1-best output structure with the current
weights w is not correct, i.e. not identical to the gold-standard structure.

The algorithm is not directly applicable to traditional SMT: Since one or more
reference translations are used for evaluation, an exact match is either unlikely or
impossible, which is further complicated by the large search spaces. Additionally,
since SMT relies on a Viterbi (maximum) approximation in decoding, scoring
a single derivation of a string instead of all possible derivations, the argmax
operation adopted in the structured perceptron is not exactly computable. The
Viterbi approximation can be straight-forwardly coped with by having the feature
mapping φ(·) include the hidden variable h, encoding the derivation, see [Liang
et al., 2006a]. Liang et al. [2006a] further propose to use an approximate reference
for the update condition, using a sentence-wise surrogate metric making it possible
to pick an oracle translation for each k-best lists [Och and Ney, 2002].

The loss for the structured perceptron in SMT can be compactly formulated
following Gimpel and Smith [2012b]:

Lstruct =
n∑

i=1

−m

(

fi, argmax
(e,h)∈K(fi)

g(e, e∗)

)

+m(fi, ê, ĥ), (2.57)

where g(·) is again a gold-standard evaluation metric, e.g. per-sentence BLEU
(slightly abusing notation by letting the function also return a (e, h) pair), and
m(f, e, h) = ⟨w,φ(f, e, h)⟩, K(f) returns a k-best list for input f , and:

(ê, ĥ) ≈ argmax
(e,h)

⟨w,φ(f, e, h)⟩, (2.58)

as returned by a SMT decoding algorithm. This loss is also closely related to
a ramp loss objective [Chapelle et al., 2009; Collobert et al., 2006], as shown by
[Gimpel and Smith, 2012b]53 for SMT:

Lramp =
n∑

i=1

− max
(e,h)∈K(fi)

[m(fi, e, h) + g(e, e∗)] +m(fi, ê, ĥ). (2.59)

In contrast to the hinge loss of the structured perceptron, the ramp loss is
non-convex, but it is a tighter upper bound of the true loss in Equation 2.54.

2.5.3.1 Margin-Infused Relaxed Algorithm

For SMT variants of the margin-infused relaxed algorithm (MIRA) [Crammer and
Singer, 2003], more precisely its application to structured prediction [Crammer
et al., 2006], have been proposed [Watanabe et al., 2007b; Chiang et al., 2008;
Chiang, 2012; Gimpel and Smith, 2012b]. The key idea of the algorithm is to

53Referred to as lossramp 2 in [Gimpel and Smith, 2012b].

47

2 Background

maintain a large margin (margin-infused) between better and worse hypotheses
(in terms of a gold-standard evaluation function), which is at least as large as the
difference in their evaluation scores, while at the same time keeping the weight
updates as small as possible (conservative). The algorithm is commonly formulated
as a quadratic program, see e.g. [Chiang, 2012]:

minimize 1/2η||w′ −w||2 + ξ
subject to ⟨w,φ(f, e+, h+)⟩ − ⟨w,φ(f, e, h)⟩ − ξ

≥ g(e+, e∗)− g(e, e∗)
∀(e, h) ∈ Y(f),

(2.60)

where e+ is a reachable, high-scoring derivation in terms of the evaluation
function (referred to as the hope derivation):

(e+, h+) = argmax
(e,h)∈Y(f)

⟨w,φ(f, e, h)⟩+ g(e, e∗), (2.61)

ξ ≥ 0 being slack variables. This optimization problem can be approached
in numerous ways, for example with the cutting plane algorithm proposed by
Tsochantaridis et al. [2004], as Chiang [2012] explicate.

Instead of a range of derivations as suggested by Watanabe et al. [2007b] and
Chiang et al. [2008], Chiang [2012] consider using only a single fear derivation
(y−, h−), which represents the most-violated constraint:

(e−, h−) = argmax
(e,h)∈Y(f)

⟨w,φ(f, e, h)⟩ − g(e, e∗). (2.62)

Following Gimpel and Smith [2012b]54, the optimization problem can be formu-
lated as a ramp loss function:

Lmira =
n∑

i=1

−

[

max
(e,h)∈Y(fi)

m(fi, e, h) + g(e, e∗i)

]

+

[

max
(e,h)∈Y(fi)

m(f, e, h)− g(e, e∗i)

]

=
n∑

i=1

−
[
m(fi, e

+
i , h

+
i) + g(e+i , e

∗
i)
]
+
[
m(fi, e

−
i , h

−
i)− g(e−i , e

∗
i)
]
.

(2.63)
Being an online learning algorithm, the problem can also be approached in a

simpler variant by stochastic gradient descent (SGD) [Martins et al., 2010; Crammer
et al., 2006; Eidelman et al., 2013b], when using a single constraint, omitting slack
variables, and without imposing limits to the magnitudes of updates that the weight

54Referred to as lossramp 3 in [Gimpel and Smith, 2012b].

48

2.6 Preference Learning & Ranking

vector should receive55:

w′ ← w + ηφ(f, e+, h+)− φ(f, e−, h−), (2.64)

which resembles the update of the structured perceptron, as shown in Algorithm
2, but using the notion of hope and fear derivations.

Mira has őrst been applied to a structured NLP problem by McDonald et al.
[2005]. In SMT, the algorithm has received most interest due to its appeal as
a online learning algorithm [Arun and Koehn, 2007; Watanabe, 2012; Watanabe
et al., 2007b,a], and for enabling the use of sparse features [Chiang et al., 2009,
2008; Hasler et al., 2011; Eidelman, 2012] due to its efficiency. Since Mira can be
implemented as an online algorithm, it also allows for parallelization [Eidelman
et al., 2013c,b]. Batch variants of the Mira algorithm have also been explored for
SMT [Zhao and Huang, 2013; Cherry and Foster, 2012]. As we have shown in our
presentation of Mira for SMT, hope and fear derivations are a way of deőning
effective constraints. However, by using k-best lists as stand-in for the full search
space, some ődelity is lost, which is why Chiang [2012] proposes a cost-augmented
inference approach to search for constraints in a larger space. Wisniewski and
Yvon [2013] present another variant for the constraints, and Eidelman et al. [2013a]
propose a variant for the margin deőnition in Mira. Tan et al. [2013] propose
an algorithm, which, similar to Mert, optimizes the exact corpus-level BLEU
score. In general structured prediction for SMT, approaches that include the search
procedure for learning have been explored thoroughly: Zhang et al. [2008] present
an application of search-based structured prediction [Daumé et al., 2009] for SMT,
and in another line of work, violation-őxing approaches are presented, which try to
counter-act incorrect updates which are due to search errors [Huang et al., 2012;
Yu et al., 2013; Liu and Huang, 2014; Zhang et al., 2013; Zhao et al., 2014].

2.6 Preference Learning & Ranking

“NEW NAVY DEVICE LEARNS BY DOING
Psychologist Shows Embryo of Computer Designed to Read and Grow Wiserž

[Special to the New York Times, July 8, 1958]

Preference learning [Cohen et al., 1998] and ranking methods have been exten-
sively studied for IR [Manning et al., 2008], commonly in the context of document
retrieval applications, i.e. web search engines [Li, 2011b; Liu, 2009]. Oftentimes,
learned models are used to provide personalized user experiences, e.g. by learning
per-user ranking preferences.

55The full optimization problem, as shown in Equation 2.60 for 1-best Mira, can also be optimized
using SGD [Martins et al., 2010].

49

2 Background

In NLP, ranking methods have also found application. To provide context of our
own work, we őrst brieŕy introduce related work in ranking for general NLP. A
more comprehensive overview of usage of ranking methods in NLP is available in
[Li, 2011a].

The prevalent variant of ranking methods in NLP is the pairwise approach:
Jiang et al. [2009] apply the linear Ranking SVM (support vector machine) [Her-
brich et al., 1999; Joachims, 2002] to keyphrase extraction, contrasting it to a
linear SVM trained in the pure classiőcation case, showing consistently superior
results in several ranking measures (MAP and Precision@{1, 3, 5, 10}, cf. Section
2.6.1.2) for the ranking method. Similarly, Metzler and Kanungo [2008] employ
a Ranking SVM for sentence selection in a summarization task, using the cross
product of relevant and irrelevant sentences as training data. Their evaluation
shows that the Ranking SVM has comparable performance to ordinal regression
and boosting approaches. Surdeanu et al. [2008] present an approach to ques-
tion answering by ranking, learning from pairwise differences of manually veriőed
answers and the outputs of an IR system. They employ a pairwise ranking per-
ceptron with uneven margins as proposed for SMT tuning by Shen and Joshi [2005].

Directly related to our work, but considering the task of reranking static lists
of offline generated translations, Shen et al. [2004] present the őrst application of
a learning-to-rank algorithm to MT: They employ a pairwise ranking perceptron
őrst proposed for parse reranking in [Shen and Joshi, 2004].

Hopkins and May [2011] őrst applied the learning-to-rank approach for ranking
in machine translation, that is learning weights for the log-linear model, which
are used for decoding. Their batch algorithm closely follows a scheme inspired by
Mert, generating k-best lists, a learning step, and re-decoding. But instead of
a line search, their algorithm generates training data for an off-the-shelf binary
classiőer56. Since learning in this approach is based on pairwise ranking, which
can be carried out with efficient algorithms, the number of features is practically
unlimited. The training data consists only of a subset of the total number of
possible pairs, by drawing a uniform sample from the data, which is additionally
őltered to include pairs that exhibit a maximal difference in the gold-standard
scores (per-sentence BLEU). Results indicate on-par performance with Mert when
using dense features, and possible additional gains by using an extended feature
set. The algorithm is referred to as PRO. Bazrafshan et al. [2012] present a similar
method, swapping out the binary maximum entropy classiőer for a linear regression
model. The model is trained to predict the difference in the gold-standard scores,
instead of the relative ordering. Their experiments indicate an advantage of about
1 %BLEU for the proposed variant of the PRO algorithm. Green et al. [2013b]
present an online version of PRO, in the sense of re-decoding after each update.

56In their case a maximum entropy model for binary classification [Daumé III, 2004].

50

2.6 Preference Learning & Ranking

They further apply updates with per-coordinate learning rates (ADAGRAD, [Duchi
et al., 2010]) instead of SGD. Wuebker et al. [2015a] apply this method to online
domain adaptation. Haddow [2013] use pairwise ranking following Hopkins and
May [2011] for learning linear interpolation weights of translation models.

Ganitkevitch et al. [2012] study the effect of varying the loss function used in the
optimization framework proposed by Hopkins and May [2011], showing virtually
indistinguishable results between the perceptron algorithm for binary classiőcation
and two implementations of maximum entropy binary classiőers.

Dreyer and Dong [2015] report on an algorithmic solution to the combinatorial
problem of pairwise ranking, which renders the sampling step in the training data
generation of Hopkins and May [2011] unnecessary. This is done by applying the
idea of Airola et al. [2011], reducing the time complexity of the learning algorithm
(a linear Ranking SVM in the primal) from O(n2) to O(ns + n log(n)) (n being
the number of training examples and s the average number of non-zero features
per example), without resorting to cutting-plane algorithms [Joachims, 2006].

Haddow et al. [2011] present a compromise between the margin-infused relaxed
algorithm for SMT (MIRA) [Chiang, 2012] and pairwise ranking by implementing
the SampleRank [Wick et al., 2011] algorithm for SMT: Instead of k-best list
generation or re-decoding, the idea is to sample a number of translation variants
from a single translation hypothesis of the decoder by using a Gibbs sampler [Arun
et al., 2009], selecting a single oracle translation following Chiang et al. [2008],
and őnally performing weight updates if the current model disagrees with the
gold-standard (in this case corpus BLEU calculated over a small sample of the full
corpus).

Watanabe et al. [2006] apply the structured perceptron algorithm to a full
pairwise sample from k-best lists for offline reranking, effectively rendering it a
ranking approach.

Some variants of listwise ranking for SMT have also been proposed for structured
prediction: Niehues et al. [2015] present a reranking approach based on the ListNet
[Cao et al., 2007] algorithm, a cross-entropy loss which compares the distributions
of the gold-standard ranking with the current model’s ranking. Zhang et al. [2016]
make use of the listwise ranking approach proposed by Pareek and Ravikumar
[2014], also for reranking of k-best hypotheses. Finally, Chen et al. [2017] employ
both ListMLE [Xia et al., 2008] and ListNet algorithms for tuning of a statistical
machine translation system in a framework similar to Mert’s.

2.6.1 Learning to Rank

Ranking of sets of objects is a widely used concept in ML and NLP. A plain
example is an ordered list of search results returned by search engine given a query
expressing an information need. The internal function of the search engine which
deőnes the ordering of the objects (in this case hyperlinks and their associated

51

2 Background

content/documents) in the returned list is the ranking function. The representation
of the objects and the deőnition of the ranking function are fundamental problems
in IR.

In the following section we will present the basic fundamentals and results of IR
necessary to describe our own work on ranking for SMT.

2.6.1.1 Formalization of Information Retrieval

We formally deőne the basic task of document retrieval as outlined before. Consid-
ering a set of documents D and a number of queries Q, the task is to assign each
d ∈ D a score with respect to any q ∈ Q. This score can be deőned as mapping
from the set of documents to the real numbers with respect to each query in Q:

f : Q×D → R. (2.65)

In the vector-space model őrst described by Salton et al. [1975], each d ∈ D, a
sequence of |d| words or items d = (w1, w2, . . . , w|d|), is represented as a vector.
In the most trivial case, each word57 w is mapped to an integer by a function u
which selects an unique entry in an ordered set V , where V is the ordered set of all
possible words:

u : V → N+. (2.66)

For convenience, we can deőne an auxiliary function vV which maps an index
returned by u to a |V |-dimensional sparse vector which has only a non-zero (1 by
default) entry at the respective component:

vV : N+ → N
|V|
+ . (2.67)

With this we can deőne a function ϕ which maps a document d to a |V |-
dimensional vector representation, which sums over the words in the document,
effectively counting the occurrences of w in d:

ϕu,v(d) =

|d|
∑

i=1

v(u(di)). (2.68)

More general, we refer to the function ϕ as a feature map, mapping from the set
of documents to a high-dimensional vector representation:

ϕ : D → R
k = S. (2.69)

Note that, since ϕ could also deőne a more complex map than in the example
deőned here, the codomain is in the real numbers and the exponent is generalized
57Here, intuitively in the sense of a single entry in a word-based vocabulary, or shorter a type.

52

2.6 Preference Learning & Ranking

to an arbitrary integer c, in the example c = |V|. We refer to codomain of ϕ as the
feature space S, in which all inputs (here: documents) will be represented.

Each component in the feature space corresponds to a distinct feature. Given a
concrete feature vector for a document, each component of that vector corresponds
to a feature value for each feature. In the trivial case discussed here, each component
i of a feature vector d of a document d is the count of the word with index i in V
of d. Since queries use the same vocabulary V , they can also be represented in the
same feature space using the same joint feature map.

Given the vector representations of a query q and documents d ∀ d ∈ D, a simple
ranking can for example be derived from the angle θ between the query and each
document:

cos(θ) =
⟨q,d⟩

|q|2|d|2
=

|V |∑

i=1

qidi

√
|V |∑

i=1

q2
i

√
|V |∑

i=1

d2
i

, (2.70)

where ⟨·, ·⟩ is a dot product58 and | · |2 is the ℓ2 norm of a vector. Cosine similarity
always assigns non-zero scores except when vectors are orthogonal (i.e. when they
are not sharing any vocabulary) or one of them is the zero-vector 0.

A query q can then be compared to each representation d in the document
collection. The result is a vector of scalars, which represents the ranking under
this simple model. By sorting this vector one can then establish an ordering of the
documents.

It is worth to note that in a real world application, instead of scoring all documents
in D, only a subset of documents D′ ∈ D will be actually scored, e.g. by checking
principal compatibility between the query and the set of documents. This has
however no consequence for the overall approach.

2.6.1.2 Ranking Measures

Our formal description of a simple document retrieval system is not yet complete.
The goodness of ranking functions, can only be assessed in reference to a gold-
standard, which is typically encoded as relevance labels or ranks (e.g. an ordinal
labels from 1 . . . n) of the documents with respect to each query.

Apart from a simple comparison of the top-ranked object, the comparison be-
tween two rankings is not trivial. Therefore a number of measures have been

58This requires that the feature space is an inner product space, which Rk is for all k > 1.

53

2 Background

suggested. In the following we will describe several basic approaches.

The fundamental ratios precision, recall and the derived F1 score provide means
to compare two rankings on the set-level, thus ignoring ordering information:

Precision =
|Relevant Documents ∩ Retrieved Documents|

|Retrieved Documents|
(2.71)

Recall =
|Relevant Documents ∩ Retrieved Documents|

|Relevant Documents|
(2.72)

F1 = 2
Precision× Recall

Precision + Recall
(2.73)

Measuring of precision and recall is more informative when calculated at deőned
cutoffs of the retrieved documents, taking for example only the 10-best scoring
documents into account. This is referred to as Precision@k and Recall@k.

Average precision further generalizes Precicion@k, averaging it over every cutoff
k in the ranking:

Average Precision =

K∑

k=1

Precision@k × δk

min(Relevant Documents,Retrieved Documents)
, (2.74)

where δk is 1 if the document at rank k is relevant according to the gold-standard,
and 0 otherwise.

Mean average precision (MAP) takes the arithmetic mean of average precisions
over a number of queries

MAP =

|Q|
∑

r=1

Average Precisionr. (2.75)

Another class of measures for evaluating rankings are rank correlation coefficients,
which try to directly measure the similarity of two rankings of the same objects.
A widely used method is Kendall’s τ , which reduces the problem of comparing
rankings to comparing only pairs of true relevance labels (e.g. 1 . . . n) to the output
of the to be evaluated ranking function. Assume that the true labels, and the
matching outputs of the ranking function are collected in vectors for n documents,
y and x respectively:

y = (y1, y2, . . . , yn) (2.76)

x = (x1, x2, . . . , xn), (2.77)

54

2.6 Preference Learning & Ranking

where entries with the same value refer to the same document, and the rank is
given by the index of the component. For this deőnition, let the gold-standard be
y = (1, . . . , n), i.e. the value is identical to the rank for the gold-standard. We can
then count the number of concordant and discordant pairs by summing over all
(
n
2

)
= 1

2n(n− 1) possible [(xi, yi), (xj , yj)] pairings by:

Concordant =

n−1∑

i=1

n∑

j=i+1

δxi<yj
, (2.78)

and

Discordant =

n−1∑

i=1

n∑

j=i+1

δxi>yj
, (2.79)

where δ[condition] is 1 if the condition is true, and 0 otherwise.

Kendall’s τ can now simply be calculated59:

τ =
Concordant−Discordant

Concordant + Discordant
. (2.80)

In contrast to most metrics in MT, some of these metrics can be optimized
directly, see e.g. [Le and Smola, 2007], [Yue et al., 2007], or [Xu and Li, 2007].

2.6.1.3 Loss Functions and Learning

The cosine similarity ranking function as formulated above has several major
drawbacks:

1. It is a static function, which only relies on geometric concepts;

2. In particular, all features in the input space have the same importance,
weighting of features is only statically possible;

3. There is no relation at all to the gold-standard measure.

These drawbacks can be resolved by using a function learned from data.
In this work we focus on linear functions60:

f(x) = ⟨w,x⟩, (2.81)

59Assuming there are no ties in the data.
60Note that biases are omitted in all formulations. If a bias is needed, the first component of

data points x is 1, and the first component of w is the associated bias.

55

2 Background

where w ∈ S is a learned weight vector, which deőnes a linear transformation
for any x ∈ S to scalar values in R.

To establish our learning framework we őrst need to make some additional
deőnitions. Let X be an m× c matrix of stacked feature (row) vectors drawn from
S, called the training set, and let Y ∈ R

c be a column vector of gold standard
labels. X replicates the feature vectors of D |Q|-times, that is m = |D||Q|. Y are
the relevance labels for all x ∈ X with respect to each query. The feature vectors
of documents for each query are constructed by a joint feature mapping ϕ(d, q),
e.g. calculating cosine similarity and other features for the query-document pair61.
X(q,j) ∈ S selects the jth feature vector of the ranking for the qth query, and
accordingly Y(q,j) the respective relevance score. We further assume that the |Q|
replications of the feature vectors X(q,·) are sorted in descending order according
to the gold-standard scores in Y(q,·) for all q = 1, · · · , |Q|. X(q,∗) and Y (q,∗) selects
all vectors and scores for query q.

By contrasting the concrete implementation of the two proposed ranking functions
it becomes apparent that cosine similarity:

⟨X(q,i),X(q,j)⟩

|X(q,i)|2|X(q,j)|2
∀ q = 1, . . . , |Q|, i = 1, . . . , |D|, j = i+ 1, . . . , |D| (2.82)

is static62 compared to the linear function:
⟨

w,X(q,i)
⟩

+ b, ∀ q = 1, . . . , |Q|, i = 1, . . . , |D|. (2.83)

The bias b can be dropped in ranking for a single query since it is not relevant
for the ordering of the output:

f(X(q,∗)) =
⟨

w,X(q,∗)
⟩

. (2.84)

But how can we learn w? We őrst deőne a loss function which quantiőes the
amount of error of the function f(·) with respect to the gold-standard scores/ranks
in Y:

L(f(X),Y) =
|Q|∑

q=1
L(f(X(q,∗)),Y(q,∗))

=
|Q|∑

q=1

|D|∑

i=1

L(f(X(q,i)),Y(q,i)).

(2.85)

61As our application is information retrieval, the concrete construction of feature vectors in the
case of information retrieval is out of the scope of this work.

62In the sense of being only dependent on the data.

56

2.6 Preference Learning & Ranking

This function can be derived from an arbitrary ranking measure as previously
introduced, e.g. (1− τ) for Kendall’s τ , or (1−MAP) for mean average precision.
As L is directly related to the actual ranking measure that the ranking function
will be evaluated with, L is referred to as the true loss.

By summing over the full training set we arrive at the empirical risk for the
ranking function f :

R(f) =
1

|Q|
L
(

f(X(q,∗)),Y(q,∗)
)

. (2.86)

With this global loss formulation we should be able to formulate our learning
procedure. However, as R(·) is not continuous63, it is not differentiable. Thus we
would have to resort on direct error minimization, which is generally hard to do
and very problem speciőc. We may however deőne a differentiable surrogate loss
function l(·) to deőne a risk that can be minimized by gradient descent:

R′(f) =
1

|Q|

|Q|
∑

q=1

l
(

f(X(q,∗)),Y(q,∗)
)

. (2.87)

Three different types of loss functions have been established for ranking problems:

• Pointwise, deőning a loss for any object in isolation: lpointwise((X
(q,i), Y(q,i)));

• Listwise, deőning a loss for full lists: llistwise(X
(q,∗), Y(q,∗));

• And pairwise, where the loss is deőned by contrasting rankings of elements
of the same query, e.g. all pairs:

lpairwise((X
(q,i),Y(q,i)), (X(q,j),Y(q,j))),

∀ q = 1, . . . , |Q|, | i = 1, . . . , |D|, j = i+ 1, . . . , |D|.

Pointwise Loss

Pointwise losses are deőned on single examples, i.e. triples of feature vector, score
of the ranking function, and gold-standard label or rank:

(X(q,i), f(X(q,i)),Y(q,i)). (2.88)

A loss for pointwise ranking algorithms can simply be deőned in terms of the
difference of predicted and true relevance label:

lpointwise =
1

2

|Q|
∑

q=1

|D|
∑

i=1

(f(X(q,i))−Y(q,i))2, (2.89)

63The ranking function can only be evaluated for the data points that can be processed by the
feature mapping.

57

2 Background

which is just the mean squared error between the prediction of f(·) and the true
label. Plugging in our proposed model we obtain:

lpointwise(w) =
1

2

|Q|
∑

q=1

|D|
∑

i=1

(⟨w,X(q,i)⟩ −Y(q,i)). (2.90)

As this is a simple regression problem, an optimal ŵ = argmin
w
lpointwise(w)

can be found through gradient descent:

w← w − η∇lpointwise(w), (2.91)

with

∇Lpointwise =
(
(Xw −Y)TX

)T
, (2.92)

for the batch update, or on a per-example basis as stochastic gradient descent:

∇lpointwise = (⟨X(q,i),w⟩ −Y(q,i))X(q,i). (2.93)

This loss can be used when Y are ordinal ranks or relevance labels. In former
case the underlying problem is referred to as ordinal regression.

Another possibility to learn a linear ranking function in the pointwise approach
is to use a variant of the perceptron algorithm. The perceptron as a classical binary
classiőcation algorithm, assumes that there are two classes, +1 and −1, and it seeks
to learn a function f that is able to discriminate between data points belonging to
different classes. The perceptron is a straight-forward implementation of such a
function:

f(x) = sign (⟨w,x⟩) , (2.94)

where sign(z) is −1 if z ≤ 0, and +1 if z > 0. Geometrically, w ∈ R
c can now

be interpreted as dividing R
c in two half-spaces by deőning an hyperplane through

⟨w,x⟩+ b, or through the origin [0]n when omitting the bias b as noted before.
We can formulate it in the context of empirical risk minimization as to minimize

a hinge loss:

lhinge = ((−⟨w,x⟩)y)+ , (2.95)

where (·)+ = max(0, ·). The (sub-)gradient64 of this loss is very simple:

∇lhinge =

{

−xy if ⟨x,w⟩y ≤ 0,

0 else.
(2.96)

64lhinge is not differentiable at 0.

58

2.6 Preference Learning & Ranking

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1

L
os

s

x

0-1
Hinge

Margin

Figure 2.7: Two hinge losses and the zero-one loss.

Again, the loss can be minimized with stochastic gradient descent.

A related loss function, that can be interpreted as ensuring a minimum margin
(1.0 in this case) between the nearest classiőed examples and the hyperplane, can
be deőned by a small modiőcation to the original hinge loss:

lmargin = ((1− ⟨x,w⟩)y)+ , (2.97)

with the subgradient:

∇lmargin =

{

−xy if ⟨x,w⟩y ≤ 1.0,

0 else.
(2.98)

Both variants of the hinge loss, as well as the zero-one loss are contrasted in
Figure 2.7.

The PRank algorithm is a straightforward application of the perceptron for
learning a linear pointwise ranking function: By using a shared weight vector w

and r − 1 separate biases bi (b) it learns to separate r ranks or relevance levels,
represented as integers. Effectively, the algorithm learns r− 1 parallel hyperplanes,
separating the space in r areas. Given a learned model and an ordered set of ranks
1, . . . , r, the prediction is as follows:

ŷ = min
i∈1,...,r

{i : ⟨w,x⟩ − bi < 0} . (2.99)

59

2 Background

Learning is reduced to the binary classiőcation case: The plane deőned by the
bias that corresponds to the true label y (with index t), bt, divides the space into
two half-spaces labeled +1 ∀ y′ ≤ y and −1 ∀ y′ > y.

Iff the prediction is incorrect (y ̸= ŷ), i.e.

(⟨w,x⟩ − bi) y
′ ≤ 0 (2.100)

a standard perceptron update is performed. Effectively the weight vector w is
updated r = |ŷ − y| times by:

w← w − ηr (−x) , (2.101)

as well as all biases bi=1,...,r−1 corresponding to incorrect classiőcations.

Listwise Loss

In the listwise approach, in contrast to the previously described pointwise approach,
the loss function is deőned on complete rankings, i.e. ordered lists of feature vectors,
instead of single points. An algorithm that implements this approach is ListNet.
The fundamental difference between the two approaches manifests itself in the
generic listwise loss function:

llistwise =

|Q|
∑

q=1

l(Y(q,∗), [f(X(q,1), . . . , f(X(q,|D|)]T), (2.102)

which is deőned on full vectors of labels and scores. ListNet is a probabilistic
approach, deőning probability distributions over possible rankings (or more general
permutations) π for a given set of documents D, and a single query q:

Pq =

|D|
∏

i=1

exp(g(π(q,i)))

|D|∑

j=i

exp(g(π(q,j)))

, (2.103)

where g(·) is the real-valued gold-standard relevance score65, and π(q,i) selects
the feature vector of the document ranked at ith position in the permutation π
with respect to a query q. Similarly, another distribution Sq can be deőned in
terms of the linear ranking function f(x) = ⟨w,x⟩:

Sq =

|D|
∏

i=1

exp(f(X(q,i))
|D|∑

j=i

exp
(
f(X(q,j))

)
. (2.104)

65Note that this approach needs to be slightly altered to work with ordinal rankings.

60

2.6 Preference Learning & Ranking

We now can deőne a loss capturing the difference between the gold-standard
ranking and the model’s output, e.g. the cross-entropy loss:

lXentropy =

|Q|
∑

q=1

−

|D|
∑

i=1

Pq(π(q,i)) log(Sq(π(q,i))), (2.105)

where the permutation π is given by the gold-standard. Pq and Sq are probability
distributions deőned over lists (with respect to queries q ∈ Q), as deőned before.

Finally, the gradient of the cross-entropy loss for a single query q and with
respect to the parameters of our the linear ranking function is (with j őxed to 1 in
the denominators of Equations 2.103 and 2.104):

∇lXentropy = −

|D|
∑

i=1

P (π(q,i))X
(q,i) +

1
|D|∑

i=1

exp
(
f(X(q,i))

)

|D|
∑

i=1

exp
(

f(X(q,i))
)

X(q,i).

(2.106)
For each list in the training data the parameters are learned with SGD:

w← w − η∇lXentropy. (2.107)

Pairwise Loss

Instead of trying to deőne a meaningful loss on single items or fully ranked lists,
the third approach is to only consider relative rankings between pairs of items,
hence the pairwise approach.

Consider a indexed set of documents D = {d} ranked by a gold-standard function
g (excluding ties) with respect to a set of queries Q:

d(q,i) ≻g d(q,j) ∀i, j ∈ D, i ̸= j ∧ ∀q ∈ Q, (2.108)

where a ≻g b denotes a transitive greater than relation between a and b as given
by g(·).

A set of pairs of relative rankings can be extracted directly from list:

{[

d(q,1), d(q,2)
]

,
[

d(q,2), d(q,3)
]

, . . . ,
[

d(q,|D|−2), d(q,|D|−1)
]

, . . . ,
[

d(q,|D|−1), d(q,|D|)
]}

,

(2.109)
i.e. the set P:

P =
{

[d(q,i), d(q,j)]
⏐
⏐
⏐d(q,i) ≻g d(q,j)

}

. (2.110)

61

2 Background

Due to the transitivity of the relation ≻g, the set P truthfully represents the
full original ranking.

For a linear learning problem, the to be learned ranking function f should ideally
fulőll the following inequalities:

d(q,i) ≻g d(q,j) ⇔ f(ϕ(d(q,i))) > f(ϕ(d(q,j)))

⇔ ⟨w, ϕ(d(q,i))⟩ > ⟨w, ϕ(d(q,j))⟩

⇔ ⟨w, ϕ(d(q,i))⟩ − ⟨w, ϕ(d(q,j))⟩ > 0

⇔ ⟨w, ϕ(d(q,i))− ϕ(d(q,j))⟩ > 0

⇔ ⟨w,X(q,i) −X(q,j)⟩ > 0.

(2.111)

The last line of Equation 2.111 provides us with an apparent solution for őnding
an optimal linear function f parametrized by a weight vector w: As f merely needs
to ensure that the difference vector between two related feature vectors results in a
margin > 0, the problem can be cast as a one-class66 classiőcation problem.

Again, we can deőne a minimization problem in terms of a hinge loss, in this
case without requiring a label67:

lpairwise = (−⟨x,w⟩)+ , (2.112)

with the subgradient:

∇lpairwise =

{

−x if ⟨x,w⟩ ≤ 0,

0 else.
(2.113)

Or with a margin:

lpairwise/margin = (1− ⟨x,w⟩)+ , (2.114)

with the subgradient:

∇lpairwise/margin =

{

−x if ⟨x,w⟩ ≤ 1.0,

0 else.
(2.115)

There are many approaches to pairwise ranking: Joachims [2002] uses a SVM to
solve the same problem as we described above68 (Ranking SVM). Herbrich et al.

66In most literature this is taken to be a binary classification problem, i.e. by including also
−(X(q,j) −X(q,i)) in P. This however effectively just doubles the amount of data without
introducing any new information since −⟨w,−(X(q,j) −X(q,i))⟩ = −⟨w, (X(q,i) −X(q,j))⟩.

67As the label is always +1 in the one-class problem.
68As the margin perceptron and the SVM are related [Collobert and Bengio, 2004], our formula-

tions are also very similar.

62

2.6 Preference Learning & Ranking

[1999] use an identical formulation, but apply it to ordinal regression. Burges et al.
[2005] present a probabilistic approach, deőning a cross-entropy loss on pairs. A
combination of a pairwise and a pointwise loss is presented by Sculley [2010], where
the pointwise loss is simple linear regression, and the pairwise loss is a hinge loss
as presented above.

63

3 Learning Preferences from Static Reference Translations

“What I cannot create, I do not understand.ž
[Richard Feynman]

In this Section we fully formalize and evaluate our online pairwise ranking
approach to parameter optimization (tuning) in SMT, based on the classical
perceptron algorithm applied for ranking objectives.

We present a motivation for pairwise ranking and link the theoretical background
presented in the previous chapter to our application. The approach to pairwise
ranking is thoroughly deőned and its challenges are elaborated. Next, we will
present the baseline algorithm of our approach, which is subsequently extended up
to state-of-the-art performance. Each aspect of our approach and its modiőcations
are empirically evaluated. This covers selection of training data, parallelization, the
underlying question of producing gold-standard rankings, regularization, amongst
others. Finally, we will present a wide range of experiments on real-world transla-
tion tasks to prove the feasibility of the presented algorithms.

First we start discussing the individual challenges that occur in a static mixed-
domain environment.

3.1 Learning from Static References

Learning preferences from static reference translations in MT poses a number of
unique problems: Since parallel data sets are most commonly concatenated from a
range of different data sets, the source segments and their respective translations are
most likely generated by a multitude of writers and translators, and cover a number
of different domains. However, the statistical models underlying SMT assume
that the data is produced from a single distribution. Because of this mismatch,
domain adaptation and multi-domain adaptation are an active research topic in
machine translation [Cuong and Sima’an, 2018]. Since the concept of a domain
in natural language is a complex problem, covering style, jargon, vocabulary and
other aspects, domain adaptation is an issue that is ideally reconsidered for every
application.

A natural example for this problem is patent translation: Patent applications
follow a strict structure and tend to heavily make use of idiomatic expressions,
resulting in a controlled use of language which is ideal for the application of the
SMT machinery. However, general patent translation systems needs to cover a

64

3.2 Learning to Rank for Statistical Machine Translation

It is well recognized that river currents when moving about a curved portion of the bed and particu-
larly at the time of a flood will gouge out the outer bank to a substantial extent and will deposit
sand and silt on the inner side of the river bottom.

A still further object of this invention is to provide a retractable floor opening in a bank for entrapping
a victime [sic] attempting to hold up a teller in which the retractable means is operated by an
explosive charge to provide instant retraction of the floor.

Figure 3.1: Top: Granted US patent US-3386250-A, titled łWater current control-
ling meansž, classiőed under major section E (’Fixed Constructions’);
Bottom: Granted US patent US-3313250-A, titled łTrap to prevent
robbery of a bankž, classiőed under major section G (’Physics’).

wide range of different thematic domains, which can result in very different uses
of language, e.g. technical terms or more general jargon. However, to be the
best utility for professional translators, it is important to also get these subtle
phenomena right. A variation of the classical linguistic example for ambiguity
for the word łbankž is shown in Figure 3.1: Without further context, translating
from English into German, a generic translation system could possibly not produce
produce the preferred translation Flussufer (river bank) for the term bank in the
őrst sentence.

In traditional SMT, when using a single őxed general domain system, this is a
hard problem because of the strong independence assumptions that are imposed
during the training of the system and the translation process. From the above
example, it becomes quite clear, that when training data is a mixture of several
domains, one should prefer not to learn too conődent statistics for this particular
term, leaving this to specialized systems.

In what follows, we propose a large-scale learning algorithm for SMT which is
able to learn robust models that do not try to model such contradicting aspects,
but instead reinforce commonalities found within the data which generalize well
throughout different sources of source material to be translated. Inherently, the
approach is also able to capture őne-grained aspects, which makes it also a suitable
algorithm for domain adaptation.

3.2 Learning to Rank for Statistical Machine Translation

The (structured) perceptron algorithm [Rosenblatt, 1958; Collins, 2002] has been
well studied in application to discriminative training for SMT: First introduced for
reranking by Shen et al. [2004] who propose a splitting algorithm, which effectively
performs pairwise ranking between two sets of translations (good and bad) for
k-best lists. Watanabe et al. [2006] also perform reranking, but with a structured

65

3 Learning Preferences from Static Reference Translations

perceptron algorithm using BLEU and WER for deőning the gold-standard score.
Tillmann and Zhang [2006] propose a structured perceptron algorithm for training
the parameters of a novel phrase-based translation model. Liang et al. [2006a] also
employ a structured perceptron variant, and experiment with different strategies
for relaxing the condition for the update rule. Finally, Yu et al. [2013] and Zhao
et al. [2014] shed further light on this issue by applying the maximum-violation
perceptron [Huang et al., 2012] to phrase-based and hierarchical SMT. Tian [2015]
apply a Plackett-Luce model [Plackett, 1975; Luce, 1959] for learning in SMT. All
these approaches have in common that they 1) show competitive test evaluation
performance, and 2) they enable to use a much larger feature space than with other
algorithms such as Mert, using millions of features instead of a couple of dozens.

The perceptron algorithm enables efficient, large-scale discriminative training
for SMT, with arbitrary types and numbers of possibly overlapping features. This
gives an incentive to train on very large data sets Ð which are in turn also needed
for estimating meaningful weights for sparse, lexicalized features.

Pairwise ranking is attractive since it enables to use large parts of the search space
of SMT system for learning, potentially more than with some of the structured
prediction approaches, which consider only a single pair of translations per k-best
list. Additionally, since the pairwise preferences are independently processed,
training data selection can be done effectively. Also, since the larger part of the
search space consists of inadequate and/or disŕuent translations, pairwise ranking
can make the best use of the available data, by leveraging pairwise differences.
Finally, pairwise ranking as proposed here is trivial to implement.

3.2.1 Pairwise Ranking for Statistical Machine Translation

For the applications discussed in this thesis1, pointwise and listwise ranking methods
try to either solve a too simple or a too complex problem. To understand why
we came to this conclusion let us őrst discuss some idiosyncrasies of the MT
approach. In principle, the MT system ranks translations according to a simple
linear function, i.e. a dot product ê = argmax

e
⟨w, e⟩ in a feature space. This

allows to directly use the weight vector learned by techniques as described in the
previous sections. In translation, one seeks for the best translation candidate using
this decision function in a search space. As the space of possible translations given
an input string is exponential, the search heavily relies on pruning. For translation,
training, and evaluating MT systems, so-called k-best lists are often used, which
are (approximated, after pruning) lists of the top k translations according to the
linear decision function. As k is typically small2 in contrast to the full search

1Which is ranking lists of similar translation candidates.
2Ranging from a few hundred to a few thousand items in most works.

66

3.2 Learning to Rank for Statistical Machine Translation

space, a listwise-based optimization would solve an overly complex problem in this
setup, which is hardly relevant, since the entries of the k-best lists are subject to
signiőcant changes every time w changes3, since the SMT search space is deőned
by w.

Additionally, the task setup is signiőcantly different in SMT compared to IR:
Instead of a static list of documents where each item is projected to a feature space
according to compatibility to a query, in SMT the search space is built up from
partial hypotheses which are compared and pruned if necessary.

Finally, due to the Viterbi approximation used during search, the feature repre-
sentation of otherwise identical strings may be different, as the argmax operation
only ranges over structures, not strings. As a consequence, a pointwise ranking
approach will have difficulties learning from these examples, as they will have
identical gold-standard scores and thus identical ranks4.

We thus concentrate our efforts on the most well suited pairwise approach.
For the sake of completeness we now deőne the pairwise ranking task for SMT

tuning.
The principal goal of pairwise ranking for SMT is to render the following

conditions true for all possible pairs of translations e with feature representations
x = ϕ(f, e, h), h being the derivation, that can be generated given a source segment
f . We denote this set of translations as Y(f), which in our work is a list of k-best
translations5. We have for any pair of translations i, j ∈ Y(f), i ≠ j, where
translation i = (1) is preferred over translation j = (2):

g(x(1)) > g(x(2))⇔ f(x(1)) > f(x(2))

⇔ f(x(1))− f(x(2)) > 0

⇔ ⟨w,x(1)⟩ − ⟨w,x(2)⟩ > 0

⇔ ⟨w, (x(1) − x(2))
  

=x̄

⟩ > 0

⇔ ⟨w, x̄⟩ > 0,

(3.1)

where f(·) is the linear model parametrized by a weight vector w, and ⟨x,y⟩ =
x ·y =

∑

i xiyi is a dot product between feature representations x generated by the
feature map ϕ(·). The function g(·) maps arbitrary translations (in isolation) to a
real valued score, e.g. commonly per-sentence-bleu(x(1)) > per-sentence-bleu(x(2))
given an implicit reference translation. Another obvious choice would be −TER.

3However, Chen et al. [2017] still describe a successful application of a tuning method based on
listwise ranking methods to SMT.

4This is also true for other forms of ties.
5Note that this is in contrast to the previous presentation in the context of IR, as Y(f) generates

possibly disjoint sets of translations for any two sufficiently different sentences f , which is
why there is no global list of items and also no dependency on some form of query.

67

3 Learning Preferences from Static Reference Translations

With the shorthand x = x(1) − x(2) it becomes evident that the problem is
equivalent to a binary classiőcation perceptron with only positive examples6. This
way, the problem becomes a one-class classiőcation problem.

If ⟨w,x⟩ is ≤ 0 the model score predicts the wrong order of the translations, and
the model needs to be updated. The resulting weight vector w can be readily used
as the (log-)linear weights of the SMT system, since ê = argmaxe⟨w, ϕ(f, e, h)⟩.

This is an equivalent formulation to the pairwise ranking problem as discussed
before in the context of IR. It is also equivalent to a pairwise hinge loss (shown for
a single training example):

lj(w) = (−⟨w,xj⟩)+ = max(0,−w · xj). (3.2)

We will be minimizing the empirical risk of a training or development set
(comprised of n sentences) to őnd suitable weights w:

Rempirical(w) =
1

n

n∑

i=1

li(w;xi). (3.3)

For SMT however, we generate a set of pairwise preference pairs Pi, from
the possible set of translations Y(fi) using a function Q, which depends on the
gold-standard score:

Pi = Qg(Y(fi)). (3.4)

Including this, the empirical risk formulation becomes:

Rdtrain(w) =
1

∑

i |Pi|

n∑

i=1

|Pi|∑

j=1

li,j(w;xi,j). (3.5)

The overall loss can accordingly be written as follows:

Ldtrain =

n∑

i=1

|Pi|∑

j=1

li,j(w; x̄i,j). (3.6)

The objective function is thus:

H(w) = 1/Ldtrain(w). (3.7)

There are several other loss functions that could be used here, e.g. we may intro-
duce the large-margin principle to take correctly ranked examples with insufficient

6In the actual binary case we would have ⟨w,x⟩y > 0, y being a class label ∈ {−1, 1}.

68

3.3 Baseline Algorithm

margins into account.

The subgradient of the hinge loss is7:

∇lj(w) =

{
−x̄j if ⟨w, x̄j⟩ ≤ 0,
0 otherwise,

(3.8)

which is exactly the one-class perceptron algorithm.

This is in principle a convex8 optimization problem which may be approached
with batch subgradient descent:

w′ ← w − η
1

∑

i |Pi|

n∑

i=1

|Pi|∑

j=1

∇li,j(w), (3.9)

or iteratively by stochastic subgradient descent:

w′ ← w − η∇lj(w), (3.10)

for all pairs j.

3.3 Baseline Algorithm

A straightforward implementation of our proposed approach is depicted in Algorithm
3: Given parallel data, a pair generation algorithm, a gold-standard ranking function
as discussed previously in Section 3.8, a learning rate, and the number of epochs
for SGD, the algorithm processes pairs generated from the decoder’s output in a
strictly iterative way. After the last step the őnal weight vector is returned, which
can then be directly used for decoding.

Although the algorithm itself is simple, there are some implications that need
clariőcation in the context of SMT:

Convexity Similar to learning in speech recognition, although the loss function
is convex, the overall learning problem is not, since the data used for learning
(Y(f)) actually directly depends9 on the learned function. Thus, every solution
on an approximated space, only represents a local minimum with respect to the
full search space. Speciőcally, due to the use of k-best lists, the data not free of
search errors and naturally represents only a small part of the overall space of
possible translations. However, considering only a őxed data set, the problem is
convex for online as well as for batch learning. But note that, in our algorithms,
7The hinge loss only has a subgradient as the gradient is undefined at 0.
8We will show in the next section why it is actually not a convex problem when applied to SMT.
9Also discussed in [Green, 2014, p. 83].

69

3 Learning Preferences from Static Reference Translations

Algorithm 3 Baseline online pairwise ranking algorithm (adapted from [Simianer
et al., 2012]). Inputs: Number of epochs T , parallel training data I, learning rate
η, gold-standard function g(·), pair generation algorithm Q.

1: procedure Dtrain

2: Initialize w0,0,0 ← 0.
3: for epochs t← 0 . . . T − 1: do

4: for all i ∈ {0 . . . |I| − 1}: do

5: Decode ith input with wt,i,0.
6: Generate training examples P using algorithm Qg.
7: for all pairs xj , j ∈ {0 . . . |P| − 1}: do

8: wt,i,j+1 ← wt,i,j − η∇lj(wt,i,j)
9: end for

10: wt,i+1,0 ← wt,i,|P|

11: end for

12: wt+1,0,0 ← wt,|I|,0

13: end for

14: return wT,|I|,|P|

15: end procedure

neither rescoring of the current k-best list nor re-decoding of the current source
segment f are performed after weight updates, thus changes in the weights are
only recognized after the processing of a full sentence.

Gold-standard The gold-standard function used for learning is signiőcantly dif-
ferent from the actual target metric due to the sentence-level approximation.

Separability There is no guarantee whatsoever that the data used for training
the perceptron is linearly separable, i.e. it can not be guaranteed that the proposed
algorithms will be able to őnd a solution in a őnite number of steps. Thus only
weaker generalization bounds apply [Freund and Schapire, 1999] than the ones
available for the perceptron in the separable case.

Despite these issues, the potential advantages of the algorithm are manifold:
Perceptron learning enables the use of arbitrary local10 feature functions in large
numbers, as well as the use of large data samples due to the algorithm’s inherent
efficiency. The linear model w learned with the perceptron algorithm can also be
directly incorporated into the machine translation decoder.

10Local in the sense of computable with respect to a single source–translation pair.

70

3.4 Experimental Setup

Data Set # Segments

Training 130K
Tuning 1K
Dev. Test 1K
Test 2K

Table 3.1: Statistics for News-commentary (Nc) German-to-English data.

Before extending the algorithm and presenting empirical evaluations of its
performance, we őrst present our experimental setup.

3.4 Experimental Setup

For the experiments in this chapter we use a range of data sets for the German-
English and Russian-English language pairs, which we describe here for clarity.
The used MT system is also described, as well as the basic setup used for all the
presented experiments.

3.4.1 Data

Brieftaubenreisevereinigung
[Compound word in German]

To provide reliable empirical results, we use a total of four data sets to evaluate the
aspects of the proposed algorithms, considering two diverse translation directions:
German-to-English and Russian-to-English. For German-to-English we are using
three data sets, for small, medium and large scale experimentation, namely Nc,
Ep, Wmt13, and a single data set for Russian-to-English, Wmt15. All numbers
depicted in the tables are rounded to the nearest thousand, ten thousand, hundred
thousand, or million, and abbreviated by K (thousand) and M (million).

The small scale data Nc is useful for fast experimentation and veriőcation of
hypotheses with a fast turn-around time. The corpus is well studied [Koehn and
Monz, 2006a] and has been used to show domain adaptation behaviour of various
MT systems [Koehn and Schroeder, 2007], inter-alia. The data is furthermore
attractive for experimentation, since a minimal system trained only using the about
130K parallel segments of training data already produces sensible outputs on the
in-domain test sets. The basic statistics of this data are depicted in Table 3.1.
The training set is the parallel data distributed for the WMT’11 (Workshop on
Machine Translation, 2011) [Callison-Burch et al., 2011b] translation task. Tuning,
development test and test data are nc-dev2007, nc-devtest2007 and nc-test2007

71

3 Learning Preferences from Static Reference Translations

Data Set # Segments

Training 1.7M
Tuning 2K

Dev. Test 2K
Test1 2K
Test2 2K

Table 3.2: Statistics for Europarl (Ep) German-to-English data.

respectively, from the data provided for the WMT’07 translation task [Callison-
Burch et al., 2007]. Three different versions of grammar extractor were used for the
experiments with Nc data set, which is why there are different baselines. Result
tables with different versions are annotated with ∗, ∗∗ or @.11 Note that the results
reported on different versions are not comparable.

The medium sized data set for German-to-English is denoted as Ep, a collection
of speeches given in the European parliament as described by Koehn [2005]. The
corpus is also well studied and widely used, and it’s training data is particularly
interesting since it is a large body of very homogeneous textual data. The training
data is a magnitude larger than that available for the small data set Nc, as depicted
in Table 3.2. We also have two test sets available. The training set is the parallel
data distributed for the WMT’11 [Callison-Burch et al., 2011b] translation task.
Tuning, development test, test1 and test2 data are dev2006, devtest2006, test2006
and test2007 respectively, from the data provided for the WMT’07 translation
task [Callison-Burch et al., 2007]. Two different versions of grammar extractor
were used for the experiments with Ep data set, which is why the baselines differ.
Result tables with different versions are annotated with ∗ or @. Also note that the
results reported on different versions are not comparable.

In addition to the in-domain data, we also use another set of development and
test sets with Ep, which is extracted from the Common Crawl data [Smith et al.,
2013]. We use a development set for tuning with about 2K segments, and also two
test sets, one containing about 2.5K and the other about 3K segments. This data
is referred to as Crawl.

The largest data set we use is denoted as Wmt13: The training data is a
concatenation of Nc, Ep and the Common Crawl training data sets. Additional
monolingual English data is added from the English Gigaword corpus [Parker et al.,
2011] for language modeling. The data was originally distributed for the news
translation task described in [Bojar et al., 2013]. For tuning, development test, and
test we have each two distinct data sets available. Parallel and monolingual training

11The results denoted with @ were published in [Simianer et al., 2012].

72

3.4 Experimental Setup

Data Set # Segments

Training 4.5M
Train. Mono. 120M

TuningS 1K
TuningL 10K

Dev. Test1 .5K
Dev. Test2 3K

Test1 3K
Test2 3K

Table 3.3: Statistics for WMT’13 (Wmt13) German-to-English data.

Data Set # Segments

Training 2M
Tuning 3K

Dev. Test 3K
Test 3K

Table 3.4: Statistics for WMT’15 (Wmt15) Russian-to-English data.

data are a concatenation of all data distributed for the WMT’13 translation task
[Bojar et al., 2013], as noted above. The monolingual data used for training a
language model includes the English side of the parallel data. TuningS data is the
őrst half of the newstest2008 data. TuningL is the concatenation of newstest2008,
newstest2009, newstest2010 and newstest2011 data. Development test1 and devel-
opment test2 are the newssyscomb2009 and newstest2013 sets respectively. The
test sets are newstest2012 and newstest2014. All tuning, development test and test
sets are distributed for the WMT’14 translation task [Bojar et al., 2014b].

For Russian-to-English, we use the data distributed for the news translation task
for [Bojar et al., 2015]. Parallel and monolingual training data is all data provided
this task. For tuning we use newstest2012, for development test newstest2013 and
for test newstest2014.

All data sets presented in this chapter only have a single reference translation
per source segment. The data is mostly used as is, without any őltering12, with
the exception of the Common Crawl data for the Wmt13 German-to-English data,

12Only parallel segments where one of the segments is empty were removed by default.

73

3 Learning Preferences from Static Reference Translations

where the data was őltered by length (maximum of 200 for both source and target)
when it is used as tuning data. For training, data is lowercased and tokenized using
the scripts distributed with the Moses SMT toolkit [Koehn et al., 2007]. When
German is the source language, we apply compound splitting either by the methods
recommended by [Koehn and Knight, 2003] or Dyer [2009]. For all experiments,
tri- or 4-gram language models are used, depending on the size of the data (N = 3
for the small data set, N = 4 for all others). Language models are estimated either
with lmplz [Heaőeld et al., 2013] or SRILM [Stolcke, 2002] toolkits using modiőed
Kneser-Ney smoothing [Kneser and Ney, 1995; Chen and Goodman, 1996], and
pruning of singleton N -grams as well as backoff interpolation. All language models
are binarized using the kenlm library [Heaőeld, 2011].

Tuning is performed on the respective tuning set of the data unless noted
otherwise.

3.4.2 Machine Translation Systems

Throughout all experiments we use the implementation of the Hiero approach
for SMT [Chiang, 2007] provided within the cdec framework [Dyer et al., 2010].
To prevent excess computation while translating, we use a őxed cube pruning
setting of 200 for rescoring with the language models. Viterbi word alignments
in both directions as required for the extraction of grammars [Lopez, 2007] are
estimated with either the GIZA++ toolkit [Och and Ney, 2003] using the wrapper
provided with the Moses toolkit. Alignment symmetrization [Liang et al., 2006b]
is also performed with the Moses toolkit using the grow-diag-final-and heuristic.
Per-segment grammars13 and associated features are extracted according to the
algorithm proposed by Lopez [2007] with either the original implementation, the
implementation described in Baltescu and Blunsom [2014], or the one distributed
with cdec. When extracting grammars for the training data, we applied a leave-
one-out technique [Zollmann and Sima’an, 2005; Wuebker et al., 2012], excluding
the current segment for rule extraction and feature estimation. For each source
token, a pass-through rule is added to the per-sentence-grammar to enable the
translation of unknown source tokens. Finally, a number of glue rules are added to
the grammars by default, providing re-combination facilities for all possible rule
conőgurations. Two non-terminals X1 and X2 are allowed, following Chiang [2007].
The maximal span size for each non-terminal is set to 15 in grammar extraction
and for decoding, while the minimum span size is one. Further grammar extraction
parameters are: Adjacent non-terminals are disallowed; there may be only őve
terminal symbols on left- and right-hand side of each rule, and őve symbols in
total; 300 samples were taken into account for each source phrase.

13Compiling all rules applicable to a sentence in a single file, which is in contrast to a global
grammar including all possible rules.

74

3.5 Model Features

All settings as described here apply to all following experiments unless noted
otherwise.

3.5 Model Features

We use a number of common features in our model, which are listed below. The
features are further grouped into two broad classes:

Dense: Dense features occur at every hypernode in a translation hypergraph. For each
(partial) path their value is the sum of all values in antecedent hypernodes.

Sparse: Sparse features only apply to a subset of nodes, which is for most features
likely ∅.

3.5.1 Dense Feature Set

Dense features, as deőned above, are usually features derived from the generative
translation- and language models. The features in the translation model as used in
this work are mostly variations of the following quantities [Lopez, 2007]:

• count(f): Absolute count of the occurrence of source phrase f in the whole
corpus, or the maximum number of samples.

• count(e): Count of the target phrase e in the whole corpus.

• count(fe): Count of the complete rule, composed of the source phrase f and
the target phrase e in the whole corpus. Since the collocations of f are
sampled, this count is effectively limited to the number of samples.

The features derived from these quantities are calculated as follows14 (vd is the
feature’s initial weight):

CountEF (vd ← 0.1):

log10(1 + count(fe)) (3.11)

EgivenFCoherent (vd ← −0.1):

− log10
count(fe)

count(f)
(3.12)

14Taken from the implementation described in [Baltescu and Blunsom, 2014], listing adapted
from [Karimova et al., 2014].

75

3 Learning Preferences from Static Reference Translations

IsSingletonF (vd ← −0.01):
{

1.0 if count(f) = 1
0.0 else

(3.13)

IsSingletonFE (vd ← −0.01):
{

1.0 if count(fe) = 1
0.0 else

(3.14)

MaxLexFgivenE (vd ← −0.1):

−

|T ([fe:f])|
∑

i=1

log10 pmax(fi|e), (3.15)

where T ([fe : ·]) is the set of terminal symbols in the source or target side of a par-
ticular rule, and pmax is the highest translation probability in a lexical distribution
given by relative frequency estimation from the symmetrized word alignments.

MaxLexEgivenF (vd ← −0.1):

−

|T ([fe:e])|
∑

i=1

log10 pmax(ei|f), (3.16)

SampleCountF (vd ← −0.1):

log10(1 + count(f)) (3.17)

Glue (vd ← 0.01):
Absolute number of usages of glue rules.

PassThrough (vd ← −0.1):
Absolute number of usages of pass-through rules.

WordPenalty (vd ← −0.1):
Absolute number of target terminal symbols.

Arity0/1/2 (vd ← −0.1):
Absolute number of rules used with arity15 0, 1 or 2.

LanguageModel (vd ← 0.1):

15Corresponds to the number of non-terminals in a rule, i.e. arity-0 rules have no non-terminal
symbols.

76

3.5 Model Features

(1) X → X1 hat X2 versprochen | X1 promised X2

(2) X → X1 hat mir X2 versprochen |
X1 promised me X2

(3) X → X1 versprach X2 | X1 promised X2

Figure 3.2: SCFG rules for translation.

Negative log-likelihood score of the language model.

LanguageModelOOV: (vd ← −1):
Absolute number of tokens unknown16 to the language model.

3.5.2 Sparse Feature Set

Sparse features only apply to subset of translations and in search only to a subset
of arcs. Thus they should be able to discriminate between different translations,
an ideal match for discriminative training. In contrast to e.g. Chiang et al. [2009],
who try to őnd sparse features that cope with very speciőc phenomena or őx
individual problems of the translation system, we seek to őnd a feature set that can
be effectively trained to improve translation quality, without the need for further
manual engineering.

To illustrate our proposed features, a sample of three SCFG rules is shown in
Figure 3.2.

Rule identiőers (Rule-Id): These features identify each rule by a unique identiőer
[Blunsom and Osborne, 2008]. Each application of a rule is counted, and the
őnal value of the feature is the sum of its applications in the derivation. Such
features roughly correspond to the relative frequencies of rewrites rules used in the
dense features described before. Each rule depicted in Figure 3.2 would correspond
to a single unique identiőer, which is obtained by mapping the rule to a string
representation. Combined, these features correspond to the use of a discriminative
translation model (grammar).

Rule bigrams (Rule-Bigram): These features identify Bigrams of consecutive items
in a rule. We use bigrams on source- and target-sides of rules. Such features
identify possible source- and target-side phrases and thus can give preference to
rules in- or excluding them.17 In Figure 3.2, the őrst rule would őre the following
additional features: X1 hat, hat X2, and X2 versprochen on the source-side, and X1

16“Out-of-vocabulary” (OOV) items.
17Similar “monolingual parse features” have been used by Dyer et al. [2011].

77

3 Learning Preferences from Static Reference Translations

promised, promised X2 on the target-side.

Rule shape (Rule-Shape): These features are indicators that abstract away from
lexical items by extracting templates that identify the location of sequences of
terminal symbols in relation to non-terminal symbols, on both the source- and
target-sides of a rule. For example, both rule (1) and (2) in Figure 3.2 map to the
same indicator, namely to that of a rule that consists of a (non-terminal, terminal *,
non-terminal, terminal *) pattern on its source side, and an (non-terminal, terminal
, non-terminal) pattern on its target side (denotes zero ore more occurrences).
Rule (3) maps to a different template (non-terminal, terminal *, non-terminal), on
both source- and target-side.

For some experiments we additionally explore a more syntax-oriented approach
for sparse features, or further sparse feature templates. The sparse feature set as
described here is denoted by Sparse, and the dense feature set as described before
by Dense.

3.5.3 Experiments with Features

In a őrst experiment we explore the feasibility of our Sparse feature set. The result
is depicted in Table 3.5. The largest number of features originates from using the
discriminative grammar. Rule bigram features add about 30K features, and rule
shapes only account for 51 features. In total, this results in about 180K for the
experiment with the full sparse feature set. The best result is achieved combining
all features. On the development test data, the Dense feature set performs best
using the small data set for tuning.

Tuning on the full bitext results in a similar picture on the test set, which this
time is also resembled by the results on the development test data.

To evaluate our proposed feature sets we compare the Dense and Sparse feature
sets on all data sets. Results depicted in Tables 3.6 for Nc∗, 3.7 for Ep∗, 3.8 for
Wmt13, and 3.9 Wmt15. All results are deőnitely in favor of the Sparse feature
set, improvements ranging from 0.3 (Nc∗, Table 3.6) to 1.8 %BLEU (Wmt15,
Table 3.9). Overall, we observe that tuning with Sparse features seems to perform
better when the underlying training data, used for estimating the generative models,
becomes larger.

3.6 Setups for Tuning Methods

In addition to our own work, we compare our efforts to the Mert and Mira

algorithms in implementations we are going to describe below. We refer to our
online pairwise ranking tuning method as Dtrain.

78

3.6 Setups for Tuning Methods

Nc@

System Dev. Test Test # Features

Dense 25.9 28.0 12
Rule-Id 25.5 †27.6 140K
Rule-Bigram 25.8 †27.4 30K
Rule-Shape 25.9 28.1 51
Sparse 25.7 28.2 180K

Dense, Bitext 26.1 †27.9 12
Rule-Id, Bitext 26.1 †28.0 3.4M
Rule-Bigram, Bitext 26.3 28.3 330K
Rule-Shape, Bitext 26.4 28.3 51
Sparse, Bitext 26.4 28.6 4.7M

Table 3.5: Comparing Sparse and Dense feature sets on small-scale Nc@ data
tuning on a small development (baseline algorithm) set as well as the
full bitext (IterMixSGD algorithm, cf. Section 3.10): Signiőcance is
assessed with an approximate randomization test between experiments
in the same group, and signiőcant differences, with p < 0.05, to the best
result (in bold) are denoted by †. Table adapted from [Simianer et al.,
2012].

Nc∗

System Dev. Test

Dense 25.2
Sparse 25.5

Table 3.6: Comparing Sparse and Dense feature sets on small-scale Nc∗ data,
tuning on a single, small development set.

79

3 Learning Preferences from Static Reference Translations

Ep∗

System Dev. Test Test1 Test2

Dense 27.8 27.9 28.1
Sparse 29.4 29.1 29.5

Table 3.7: Comparing Sparse and Dense feature sets on medium-scale Ep∗ data,
tuning on a single, small development set.

Wmt13

System Dev. Test1 Test1 Dev. Test2 Test2

Dense 18.3 16.7 19.1 19.2
Sparse 19.6 18.1 20.3 20.6

Table 3.8: Comparing Sparse and Dense feature sets on large-scale Wmt13 data,
tuning on a single, small development set (TuningS).

Wmt15

System Dev. Test Test

Dense 17.0 20.5
Sparse 19.1 22.3

Dense, Bitext 20.7 25.0
Sparse, Bitext 21.9 26.1

Table 3.9: Comparing Sparse and Dense feature sets on Wmt15 data, tuning on
a single, small development set as well as the full bitext.

80

3.6 Setups for Tuning Methods

All methods described in this work rely on k-best lists for approximating the true
search space. Throughout this work we use k = 100 unique entries. Uniqueness is
applied on the string level, always including only the derivation with maximum
score.

For all data sets a development test set is used to adjust the various hyperparam-
eters of different methods, reporting scores on test with settings that maximized
the score on the respective development test set.

If applicable, all methods use the same amount of epochs18.

3.6.1 Minimum Error Rate Training

We use an implementation of hypergraph Mert, as described by Kumar et al. [2009]
which is an adaptation of the lattice-based Mert algorithm [Macherey et al., 2008],
but using hypergraphs instead of k-best lists.

An implementation of hypergraph-Mert is provided within the cdec framework.
This version requires non-zero initial weights for each feature to be optimized. For
our experiments use the weights as depicted as described in Section 3.5.1.

Since Mert uses random initializations, we can account for optimizer instability
by repeating the tuning process at least three times, following Clark et al. [2011].
We report the mean scores along with standard deviations if applicable.

3.6.2 Margin-infused Relaxed Algorithm

For the experiments with the Mira algorithm we use the implementation distributed
with cdec which supports a wide range of hyperparameters. This implementation
of Mira uses k-best lists as surrogate for the true search space to select hope and
fear derivations. Hope and fear can be selected by a number of criteria, which we
exhaustively explore in our experiments. In one variant we calculate hope and fear
as proposed by Chiang [2012] by:

hope = argmax
·

m(·) + g(·)

fear = argmax
·

m(·)− g(·),
(3.18)

where m(·) is the model score and g(·) is the gold-standard score (the higher the
better).

In the other variant, hope and fear derivations are simply calculated as g(·)
and −g(·) respectively, similar to the local update of Liang et al. [2006a]. The
gold-standard function is a smoothed per-sentence BLEU [Chiang, 2012].

For Mira we use the default of k = 500 unique translation hypotheses for all
experiments. Sentence-level BLEU scores are calculated using a pseudo corpus, as
proposed by Chiang [2012], using a decay rate of 0.95.

18Epoch referring to a single complete iteration over all training data.

81

3 Learning Preferences from Static Reference Translations

The implementation supports parallelization similar to the downpour scheme
[Dean et al., 2012], but we use only a single process to obtain deterministic results,
since the parallelization resulted in large variance in the results [Simianer et al.,
2012]. The algorithm is run for the default of 20 epochs, and őnal weights are
generated by averaging the őnal weights of each epoch.

We try őve different optimizers: SGD, passive aggressive Mira with selection
from cutting plane, cutting plane Mira, passive-aggressive Mira, and full Mira

with k-best constraints of hope, fear, and model-best constraints. Optimization is
always started from the same initial weights as used for Mert. The weights for
the Sparse feature set are initialized to 0.

We always perform a full sweep over step sizes/learning rates over the range
10−10. . . 1.0 with a granularity of 10−1.

Optimization is carried out online, with k-best lists of translations re-generated
once per each epoch.

3.6.3 Online Discriminative Training with Pairwise Ranking

For all experiments with Dtrain, the optimization starts from the 0 vector. When
using a margin, it is őxed at 1.0, and a coarse grid search for an optimal learning
rate is performed over the range 10−10. . . 1.0 with a step size of 10−1. Without
a margin the learning rate is őxed to 1.0. We always use a k-best size of 100 for
experiments with Dtrain, and optimize a smoothed per-sentence BLEU according
to Nakov et al. [2012] unless noted otherwise. Examples from all k-best lists are
generated by őrst sorting according to the gold-standard score, then applying a
pair extraction algorithm as described in Section 3.8. By default we are using the
algorithm depicted in Algorithm 5.

The implementation of the algorithm is online, each segment (excluding the very
őrst segment) is translated with an updated weight vector, unless the data for
the previous segment were all correctly classiőed. The individual updates consist
however of the sum of all gradients for a single k-best list. Thus the updates can
be considered as mini-batches, since the learning rate applies to a (non-normalized)
sum of gradients.

The settings for parallelization are described n the description of the speciőc
experiments.

For evaluation we report %BLEU-4 scores on development test and test data
sets. We do not report score on training or tuning sets scores, since scores are
calculated on a per-sentence basis. All scores are calculated on lowercased and
tokenized data.

82

3.7 Experiments with Synthetic Data

Full Multipartite

Training Test Acc. Train Err. Test Acc. Train Err.

all 97% 0% 100% 0%
100K 90% 0% 96% 0%
10K 74% 0% 85% 0%
1K 64% 0% 71% 0%

Table 3.10: Synthetical experiments using the Sparse feature set for both full and
multipartite settings, reporting accuracies on test data and error rates
on training data.

3.7 Experiments with Synthetic Data

To validate our approach and to obliterate the underlying issues of (non-)convexity
and linear separability we conduct a series of synthetical experiments: We simu-
late a classical binary classiőcation problem by considering a őxed set of training
examples (pairs), without re-decoding, effectively iterating the innermost loop of
Algorithm 3 in a reranking task.

For this experiment we generated training and test data from the TuningS
development set of the Wmt13 data, either with using all pairs or our multipartite
scheme (cf. Section 3.8). This resulted in 1.7M pairs in total for the multipartite
data, and 4.6M for the full data. For both data settings we conducted 75/25 random
splits for generating training and test sets. From the training data we furthermore
randomly sampled additional subsets with 100K, 10K, and 1K examples to obtain
training sets of diverse sizes. The total number of features is about 110K for both
settings.

We trained a perceptron with a hinge loss objective on each data set until
convergence, which we deőne as no observed change in training error for ten
consecutive epochs. Training is done for a maximum of one million epochs. The
perceptron is effectively a one-class perceptron since all training examples belong
to the class +1. Both feature settings are considered: Dense and Sparse.

Results of our experiments are depicted in Tables 3.10 and 3.11. Using the Sparse

feature set, all training data splits are perfectly separable, and scaling the training
data improves up to 33% accuracy (using the 1K training data as a baseline).
The multipartite settings exhibits a test-time advantage of 3%ś11% accuracy.
With Dense features, the training data does not seem to be separable under any
condition, the error remaining at about 40% when hitting the maximum epoch
limit. Test performance is the same for all settings within a 5% range. Multipartite

83

3 Learning Preferences from Static Reference Translations

Full Multipartite

Training Test Acc. Train Err. Test Acc. Train Err.

all 60% 43% 60% 39%
100K 52% 43% 59% 39%
10K 58% 43% 60% 39%
1K 55% 47% 59% 40%

Table 3.11: Synthetical experiments using the Dense feature set for both Full and
multipartite settings, reporting accuracies on test data and error rates
on training data.

data seems to have slight advantages in training error and test accuracy, but only
for smaller training data settings.

The main őndings are that data appears to be separable when using the Sparse

feature set, but not using only Dense features, which indicates that our approach
may work better using the Sparse feature set. Furthermore, the multipartite
settings seem to show somewhat better performance, selecting only pairs with some
margin, without trying to tear apart very close translations.

3.8 Gold-Standard

The translation quality metric which induces the gold-standard ranking is a central
aspect of the proposed algorithms. The BLEU metric as introduced by Papineni
et al. [2002] is the default choice, since it shows positive correlation with human
judgments [Papineni et al., 2002; Coughlin, 2003] and is straight-forward to imple-
ment while being easily interpretable due to its simple formalization in terms of
averaged of N -gram precisions. It is also mostly language-independent19, which
is important for fast execution and rapid development. Furthermore, Cer et al.
[2010] show that the family20 of BLEU scores is the preferred metric for tuning
with Mert.

For a metric to be usable as gold-standard metric in the proposed ranking setup
it should have two characteristics: 1) it is evaluable on a per-sentence basis, and
2) fast to evaluate, since it is evaluated n (size of the data set) × k (number of
hypotheses per source segment in the data set) times in a single epoch of training.
Metrics based on counting string-level operations converting a hypothesis into the
reference translation such as TER satisfy constraint 1), but due to the search

19A notable, but for our work dismissed, exception is the question of atomic units which are
considered for computing N -grams and their precision.

20BLEU-1, BLEU-2, BLEU-3 and BLEU-4 scores.

84

3.8 Gold-Standard

for the optimal action sequence they are not fast21 to evaluate. BLEU on the
other hand is fast to evaluate, requiring only the generation of N -gram counts and
segment lengths. But there is a major caveat Ð BLEU is designed in such a way
that it scores translations at the corpus level [Papineni et al., 2002]. The reason
for this is that the N -gram statistics are only likely to be non-zero for all N if
more than a single sentence is considered. The problem is evident considering the
calculation of the geometric average for the N -gram precision P :

P =

(
N∏

i=1

Qi

) 1

N

, (3.19)

if any Qi are 0, the whole score will be zero and thus non-informative, even if
there are a number of trigram matches for N = 4. For training, especially the
ranking objectives discussed here, it is important that every hypothesis in the
search space has an non-zero, informative score. Intuitively, it would also make
sense to be able to calculate a score even though there is no e.g. no matching
4-gram in a candidate with only four words.

To overcome this problem and to evaluate BLEU on the segment level, many
smoothing and approximation techniques have been developed. In a discussion on
how to automatically assess the quality of machine translation metrics, Lin and
Och [2004] address the discussed problem of non-informative zero scores, since they
try to score all k-best hypotheses in the output. Their procedure is to simply add
1.0 to all N -gram precision calculations for all N > 1:

q′N =

∑

g∈nN (c)

δ′r(g)

|nN (c)|+N −max(N − 1, 1)
, (3.20)

where δ′r(g) (clipped N -gram count w.r.t. reference r, see Section 2.3.2.2) is
1 + δr(g) ∀N > 1 iff δr(g) > 0 for N = 1.22 This effectively solves the problem,
but as Nakov et al. [2012] show, this can have unwanted implications when the
metric is used for optimization: Since the method effectively adds N − 1 N -gram
hits without correcting the brevity penalty, the modiőcation shown in Equation
3.20 leads to a slight bias towards shorter translations. This is because the sum
of N -gram precisions gains in importance compared to the brevity penalty term.
Thus shorter translations may be preferred when a model optimized with this
variant of the per-sentence BLEU score. The remedy as proposed by Nakov et al.

21The time complexity of the Levenshtein distance is O(|ê||e|) using a single reference e, ê being
a candidate translation.

22Nakov et al. [2012] refer to limiting the add-one smoothing to precisions N > 1 as “grounding”,

and implement it by subtracting
(

∏N
1

1
|nN (c)|+1

) 1

n
.

85

3 Learning Preferences from Static Reference Translations

[2012] is to simply add 1.0 to the effective reference length:

BP′ =

{

1 if |c| > |r|+ 1

exp(1−(|r|+1)/c) else.
(3.21)

Liang et al. [2006a] present another remedy for zero per-sentence BLEU scores in
the context of applying the structured perceptron to SMT optimization: Recall, that
the original BLEU score is a (weighted) geometric average of N -gram precisions,
and that, if there is not a single match for any N , the score will become zero. Liang
et al. [2006a] propose to use a weighted sum of individual BLEU scores, instead of
a single one:

N∑

i=1

BLEUi(c, r)

2N−i+1
, (3.22)

where BLEUi is the original geometric average (including brevity penalty) up to
N = i. Implemented like this, half of the score is accounted for by the full score,
e.g. BLEU-4.

A more sophisticated idea for approximating BLEU on the sentence-level is
presented in [Watanabe et al., 2007b] and [Chiang et al., 2008]: Instead of simple
local smoothing, essentially only solving a numerical problem, one could also try
to solve the underlying problem of not having any context23 for calculation of
the original BLEU score. The key idea is to use the previous best hypotheses
as context for calculation of the BLEU score, thus effectively circumventing zero
scores. Therefore, we calculate the precision term Q′

N as a sum of two terms:

Q′
N =

[
∑

c∈C′

N∑

i=1

q
(c)
i

]

+

N∑

i=1

q′i, (3.23)

where C′ is the set of one-best candidate translations in the pseudo corpus (all
previous segments already processed in the current epoch), the N -gram precisions
q
(c)
i are calculated for a given candidate translation c, and q′i is calculated for the

currently to be scored hypothesis. The brevity penalty is calculated similarly:

BP′′ =

{
1 if |c′|+ |c| > |r′|+ |r|

exp(1−(|r′|+|r|/|c′|+|c|)) else,
(3.24)

r′ and c′ referring to the pseudo corpus.
Watanabe et al. [2007b] and Chiang et al. [2008] differ in the deőnition of the

pseudo corpus: While Watanabe et al. [2007b] simply deőne it as the remainder

23Context is important in the BLEU score, since statistics calculated on single sentences could
be misleading.

86

3.8 Gold-Standard

of the data set used for optimization24, switching out only the statistics for the
currently considered sentence e.g. when scoring a k-best list. Instead, Chiang et al.
[2008] recommend to use a decaying moving average of the previously translated
sentences in an online learning setup:

Q′
N = γ

[
∑

c∈C′

N∑

i=1

q
(c)
i

]

+
N∑

i=1

q′i, (3.25)

and

BP′′′ =

{
1 if γ|c′|+ |c| > γ|r′|+ |r|

exp(1−(γ|r′|+|r|/γ|c′|+|c|)) else,
(3.26)

where γ is typically around 0.9. The pseudo corpus C′ is reset after each epoch
of training.

There are more advanced methods to approximate the BLEU score for single
sentences: Tromble et al. [2008] propound to use a őrst-order vector Taylor ex-
pansion about an initial guess of the statistics for training a minimum Bayes-risk
decoder on lattices Ð however ignoring the brevity penalty and the clipping of
N -gram counts25.

We experimented with őve variants of BLEU approximations as deőned above,
and on two datasets, two sets of features, and either one or three datasets, respective
of the use corpus. The results are depicted in Table 3.3.

1. Papineni: No smoothing, just the original BLEU score calculated on a
per-sentence basis;

2. Lin: Simple add-one smoothing as proposed by Lin and Och [2004], Equation
3.20;

3. Nakov: Add-one smoothing and corrected reference length as proposed by
Nakov et al. [2012], Equations 3.20 and 3.21;

4. Liang: Combination of N BLEU scores, as described in Liang et al. [2006a],
Equation 3.22;

24That implies that the whole document has to be translated in advance.
25Sokolov et al. [2012a] extend this approach to include clipping and the brevity penalty, but as

an approximation of the NP-hard problem of finding BLEU-oracle hypotheses in translation
lattices of the phrase-based machine translation paradigm [Leusch et al., 2008], which is not
directly applicable to scoring arbitrary translation hypotheses.

87

3 Learning Preferences from Static Reference Translations

5. Chiang: Calculation of per-sentence scores in the context of a pseudo corpus
of previous 1-best translations, as proposed by Chiang et al. [2008], Equations
3.25 and 3.26. We set γ to 0.9.

The results reported in Table 3.3 report (corpus) BLEU scores. For the Nc∗

data, on both feature sets, the results seem to be very similar, which are however
observed at different learning rates26 on a single development set. The Chiang

approximation gives the best result, by a small margin. Note that none of these
results show any problem with brevity penalty, which is in contrast to the results
for the PRO algorithm [Hopkins and May, 2011] reported in [Nakov et al., 2012],
suggesting there is no bias in the selection of training examples for our proposed
approach.

On the Ep∗ data set, using a single development set for parameter tuning, the
advantage of the approximation variant using a pseudo corpus has vanished, with
about equal performance of Chiang and Nakov. The non-smoothed BLEU score
shows however deteriorated results in the overall evaluation score.

Due to these results, and the simplicity of the approach, throughout this work
we are using the per-sentence BLEU variant proposed by Nakov et al. [2012] for
our algorithms, denoted by Nakov, unless noted otherwise.27.

3.9 Generating Training Data

Even for the simplest translation problem, the overall search space is too large to
be fully explored28 and the problem of őnding the optimal path is NP-complete
[Knight, 1999]. A natural choice for approximating the search space, when the true
space is too large to fully explore, are k-best lists consisting of the top-k translations
by model score. This set can be efficiently found, although with search errors due
to pruning. But still, even at modest numbers for k, e.g. 100, considering the full
cross-product of pairs from a ordered list K is still not feasible, since the full set:

P =
{

(x(i), x(j))|x(i), x(j) ∈ K ∧ i, j ∈ KJ ∧ i < j
}

, (3.27)

(where KJ is the index set of K, with the index of the őrst item being 1), would
require computation of

|P| =
1∑

i=N−1

i =
N(N − 1)

2
(3.28)

26The margin perceptron is used for this experiment.
27Gimpel and Smith [2012a] also report superior results for Nakov in a single reference evaluation,

which we are also considering here.
28For word-based machine translation, the most basic case, allowing any reordering of the source f

as input, and having on average l translation options per source word (including ϵ translations),
the number of possible paths is |f |!× l.

88

3.9 Generating Training Data

Nc∗

System Dev. Test BP

Dense, Nakov 26.3 1.0
Dense, Chiang 26.4 1.0
Dense, Liang 26.3 1.0
Dense, Lin 26.2 1.0
Dense, Papineni 26.3 1.0

Sparse, Nakov 26.7 1.0
Sparse, Chiang 27.0 1.0
Sparse, Liang 26.8 1.0
Sparse, Lin 26.7 1.0
Sparse, Papineni 26.8 1.0

Ep∗

System Dev. Test BP Test1 BP Test2 BP

Dense, Nakov 30.2 1.0 29.9 1.0 30.3 1.0
Dense, Chiang 30.1 1.0 29.9 1.0 30.2 1.0

Sparse, Nakov 30.1 1.0 30.0 1.0 30.5 1.0
Sparse, Chiang 30.1 1.0 30.1 1.0 30.6 1.0
Sparse, Papineni 29.7 1.0 29.9 1.0 30.2 1.0

Wmt15

System Dev. Test Test

Dense, Nakov 21.9 27.1

Dense, Chiang 21.9 26.8

Sparse, Nakov 22.7 27.5
Sparse, Chiang 22.9 27.6

Figure 3.3: Comparing different variants of per-sentence BLEU approximations for
the gold-standard function.

89

3 Learning Preferences from Static Reference Translations

pairs per source segment. Taken for itself that is not is not a prohibitive number,
but considering that this number of pairs has to be evaluated for every segment in
the training data also in addition to decoding costs. In practice this brute force
approach is thus prohibitively slow in most cases.

In [Hopkins and May, 2011] this problem is also acknowledged, and an alternative
heuristic sampling procedure is proposed: Instead of trying to learn from the full
space of pairs with |P| members, they propose to sample a őxed number of l pairs
from the complete set of possible pairs, while enforcing a minimum difference in
the gold-standard score for each pair. The sampling is iterated until the set of
pairs has l elements. Their algorithm29 is depicted in Algorithm 4: The k-best
list of translations is őrst ordered according to the output of the gold-standard
scoring function g(·). From this list, a set of pairs P is iteratively constructed by
sampling two indexes i, j from KJ uniformly at random and checking whether their
difference in the gold-standard score g(K(i))− g(K(j)) is greater or equal than a
threshold δ.30

This algorithm has been show to have some problematic effects: Since the
selection of training data focuses on pairs with a high quality differential31, the
algorithm may (depending on the baseline quality of the translation system) select
bad examples for comparison, e.g. translations that have very bad characteristics
such as problems with length, as established by Nakov et al. [2013]. Additionally,
the algorithm has a number of hyperparameters (gold-standard score difference
δ and number of pairs to accept l) which is also problematic, since, ideally, they
should be optimized for each data set, as the optimal values may change during
optimization, e.g. when overall translation quality is getting better, a smaller δ
may be appropriate. Accordingly, Cherry and Foster [2012] report issues őnding
parameters of the algorithm that work well in general. Overall the algorithm
requires the setting of of four hyperparameters: the k-best list of translations K for
a given segment, a gold-standard function g(·), i.e. per-sentence BLEU, a minimal
difference in gold-standard score δ, and a maximum number of pairs l. U{·} in the
algorithm is a uniform distribution.

Lastly, Nakov et al. [2012] suggest that this training data generation may bias

29Note that the algorithm is intentionally written in a suboptimal way for the sake of comparability
with our own work — instead of the nested iteration over the index set KJ one could simply
draw two different indexes from the index set at random without replacement and skip the first
sorting operation. Also, the shown algorithm is missing a stopping criterion due to the chosen
formulation. See [Hopkins and May, 2011] for an alternative formulation of the algorithm.

30Watanabe et al. [2006] use a similar algorithm for generating the training data for their pairwise
ranking rescoring approach: They add pairs (K(i),K(j)) of a k-best list K (which is sorted
according to the original model score) to their training data iff a per-sentence BLEU score for
K(j) is larger than K(i) and the WER of K(i) is also worse than the one of K(j).

31The δ parameter of the algorithm was chosen to be 0.05 in [Hopkins and May, 2011] (5 %
points in per-sentence BLEU).

90

3.9 Generating Training Data

Algorithm 4 The heuristic training data generation of Hopkins and May [2011].
Inputs: k-best list K, gold-standard function g(·), threshold δ, and maximum
number of pairs l.
1: procedure Sample Pairs Pro

2: for i← 1 . . . k do

3: gi ← g(K(i))
4: end for

5: Sort g in decreasing order.
6: Sort K according to the values of g.
7: P ← ∅
8: while |P| < l do

9: for i← 1 . . . |K| − 1 do

10: for j ← i+ 1 . . . |K| do

11: if X ∼ U{0, 1} ≥ 1− l
|P| then

12: if gi − gj > δ ∧ (K(i),K(j)) ̸∈ P then

13: P ∪
{
(K(i),K(j))

}

14: end if

15: end if

16: end for

17: end for

18: end while

19: Return P
20: end procedure

91

3 Learning Preferences from Static Reference Translations

the learned model to produce translations that are too short, possibly coming from
the pair acceptance criterion of the algorithm.

We propose a simpler algorithm for the generation of training data, with only a
single hyperparameter, focusing on the capability of the translation model instead
of looking for examples with a large margin in terms of the gold-standard score.
This algorithm is depicted in Algorithm 5.

Algorithm 5 Generating training data using multiple quality levels. The algorithm
requires a single hyperparameter κ to determine the quality levels. Inputs: k-best
list K, gold-standard function g(·), parameter κ.
1: procedure Sample Pairs Multipartite

2: for i← 1 . . . k do

3: gi ← g(K(i))
4: end for

5: Sort g in decreasing order.
6: Sort K according to the values of g.
7: P ← ∅
8: for i← 1 . . . ⌊κ|K|⌋ do

9: for j ← ⌊κ|K|⌋+ 1 . . . |K| do

10: if gi ̸= gj then

11: P ∪ {(K(i),K(j))}
12: end if

13: end for

14: end for

15: for i← ⌊κ|K|⌋+ 1 . . . |K| − ⌊κ|K|⌋ do

16: for j ← |K| − ⌊κ|K|⌋+ 1 . . . |K| do

17: if gi ̸= gj then

18: P ∪ {(K(i),K(j))}
19: end if

20: end for

21: end for

22: Return P
23: end procedure

In the algorithm the translations of each k-best list are divided into three distinct
groups or levels Ð high, medium and low Ð as deőned by a hyper parameter
0 < κ < 1.0. Since the k-best list is sorted according to the gold-standard score
prior to generation of the pairs, these groups may reŕect actual levels of translation
quality32. We refer to this method as multipartite ranking. A visualization is

32The exact sizes of the three levels may be adjusted if gold-standard scores at the boundaries

92

3 Learning Preferences from Static Reference Translations

Algorithm 6 Full pairwise sample for training data generation. Inputs: k-best
list K, gold-standard function g(·).
1: procedure Sample Pairs Full

2: for i← 1 . . . k do

3: gi ← g(K(i))
4: end for

5: Sort g in decreasing order.
6: Sort K according to the values of g.
7: P ← ∅
8: for i← 1 . . . |K| − 1 do

9: for j ← i+ 1 . . . |K| do

10: if gi ̸= gj then

11: P ∪ {(K(i),K(j))}
12: end if

13: end for

14: end for

15: Return P
16: end procedure

ehope with derivation hhope by:

(ehope, hhope) = argmax
(e,h)∈K

⟨w, ϕ(f, e, h)⟩+ g(e, e∗), (3.30)

and also a fear translation efear (hfear) by:

(efear, hfear) = argmax
(e,h)∈K

⟨w, ϕ(f, e, h)⟩ − g(e, e∗). (3.31)

An update is performed iff ⟨w, ϕ(f, ehope, hhope)⟩ > ⟨wϕ(f, efear, hfear)⟩, and
ehope ̸= efear (by string comparison). The algorithm is depicted in Algorithm
7. This is an extreme choice, since in this proposed variant only a single pair is
considered for usage in an update. As it resembles ideas from the Mira inspired
structured prediction approaches, as described in Section 2.5.3.1, we refer to this
method as structured (abbreviated as struct.).

All previously discussed methods for generating training data have differences
both in their general justiőcation and their implementation: In the strategy of
Hopkins and May [2011], the goal is to end up with a small number of pairs,
which all represent a contrast between translations with a large quality difference
according to the gold-standard. They employ sampling, which renders the strategy
non-deterministic34. Experiments using the algorithm as a baseline reported by

34Ideally, to control for this variability, experiments with this method should be repeated to

94

3.9 Generating Training Data

Algorithm 7 Training data generation by selecting hope and fear translations.
Inputs: k-best list K, gold-standard function g(·), model score m(·).

1: procedure Sample Pairs Structured

2: for i← 1 . . . k do

3: gi ← g(K(i))
4: end for

5: hope← ·, scorehope ← −∞
6: fear← ·, scorefear ← −∞
7: P ← ∅
8: for i← 1 . . . |K| do

9: if scorehope < m(K(i)) + gi then

10: hope← K(i)

11: end if

12: if scorefear < m(K(i))− gi then

13: fear← K(i)

14: end if

15: end for

16: if hope ̸= fear then

17: P = (hope, fear)
18: end if

19: Return P
20: end procedure

95

3 Learning Preferences from Static Reference Translations

Nc∗∗

System ↓ Dev. Test

Dense, Full 23.3
Dense, Multipartite 23.5

Dense, PRO 23.3
Dense, Structured 23.5

Sparse, Full 23.7
Sparse, Multipartite 23.9

Sparse, PRO 23.5
Sparse, Structured 23.9

Table 3.12: Experiments with different pair selection strategies on a small scale
experiment based on the small data set (Nc∗∗).

Dreyer and Dong [2015] illustrate the problem. Using k-best lists with k = 1500,
the 50 pairs with the highest difference in gold-standard are selected from a sample
of 5,000 out of the total number of 1,124,250 possible pairings35.

Watanabe et al. [2006] use k = 1000, but do not report how many pairs are
effectively used according to their proposed selection criterion.

3.9.1 Evaluation

To evaluate pair selection strategies we performed two sets of experiments: 1)
comparing the previously described pair selection strategies on a single toy task,
and 2) comparing multipartite ranking and the hope-fear strategy on the small and
medium data sets.

The results of the őrst experiment are depicted in Table 3.12. For data we used
the Nc∗∗ data set, tuning is carried out as described previously for all settings.
The reported scores are generated using the averaged weights for translation of the
development test set. We test both Dense and Sparse feature sets.

We observe that the full pairwise sample, as well as the PRO algorithm are
behind of both the multipartite and the structured hope and fear approach. In
the structured approach we effectively only check a single pair (constraint) in the

account for optimizer instability, see [Clark et al., 2011] or [Cettolo et al., 2011].
35The effective number of pairs in the experiments described in [Hopkins and May, 2011] is 100,

since the training data is doubled by considering both (K(i),K(j)) and (K(j),K(i)) with
opposing labels. This however adds no additional viable information to the training process
since ⟨w, ϕ(x(1))− ϕ(x(2))⟩ = −⟨w, ϕ(x(2))− ϕ(x(1))⟩.

96

3.10 Parallelization

Nc∗

System Dev. Test

Dense, Multipartite 26.3

Dense, Structured 26.2

Sparse, Multipartite 26.7
Sparse, Multipartite 26.7

Ep∗

System Dev. Test Test1 Test2

Dense, Multipartite 30.2 29.9 30.3

Dense, Structured 27.1 27.0 27.3

Sparse, Multipartite 30.1 30.0 30.5

Sparse, Structured 27.5 27.7 28.1

Table 3.13: Experiments with a structured objective on small and medium scale
data using the Nc∗ and Ep∗ data sets with Dense and Sparse features.

update rule, which could be more efficient.
Results focusing on the multipartite ranking vs. the hope-fear strategy on the

full Nc∗ data set and medium Ep∗ data are shown in Table 3.13. While results are
again almost identical on the Nc∗ development test data, the structured strategy
does not perform as well on the larger Ep∗ data.

Following these results, throughout this work, unless otherwise noted, training
data for discriminative learning are prepared by comparing a 100-best list of
translations against a single reference translation using a smoothed per-sentence
BLEU variant, i.e. Liang et al. [2006a] or Nakov et al. [2012]. We use κ = 0.1 for
the multipartite pair selection method (Algorithm 5) all of our experiments and
refer to this setup as 10-80-1036.

3.10 Parallelization

The complexity of the baseline algorithm as presented before is, as an instance of
SGD, maximally linear in sample size [Bottou, 2004; Bousquet and Bottou, 2008].
For algorithms with a őxed size training set or in a true online setting this is either

36The top 10% of translations are compared to the full residual of the list, the medium 80% only
to the bottom 10%.

97

3 Learning Preferences from Static Reference Translations

acceptable or inevitable. However, for online MT optimization which we seek to
improve, this is very inefficient, since it is not possible to perform decoding in
parallel which dominates the runtime of the overall algorithm37.

Various approaches to parallelization for SGD have been proposed: Zinkevich
et al. [2010] and McDonald et al. [2010] proposed simple mixing and iterative
mixing strategies for training on disjoint parts of large data sets, both providing
convergence bounds for convex problems.

Algorithm 8 Parameter mixing for online pairwise ranking optimization algorithm
(adapted from [Simianer et al., 2012]). Inputs: Number of epochs T , number of
shards Z, parallel training data I, learning rate η, gold-standard function g(·), pair
generation algorithm Q.

1: Partition data into Z shards, each of size S ← |I|/Z and distribute to machines.
2: procedure MixSGD

3: for all shards z ∈ {1 . . . Z}: parallel do

4: Initialize wz,0,0,0 ← 0.
5: for epochs t← 0 . . . T − 1: do

6: for all i ∈ {0 . . . S − 1}: do

7: Decode ith input with wz,t,i,0.
8: Generate training examples P using algorithm Qg.
9: for all examples xj , j ∈ {0 . . . |P| − 1}: do

10: wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
11: end for

12: wz,t,i+1,0 ← wz,t,i,|P|

13: end for

14: wz,t+1,0,0 ← wz,t,S,0

15: end for

16: end for

17: Collect őnal weights from each machine,
18:

19: return 1
Z

Z∑

z=1

(

1
T

T∑

t=1
wz,t,S,0

)

.

20: end procedure

Our implementations of parameter mixing and iterative parameter mixing are
depicted in Algorithms 8 and 9 respectively.

The sole difference between the two algorithms is that Algorithm 8 requires
absolutely no communication between shards while optimization, while Algorithm
37Apart from decoding, which has at least cubic time complexity, the baseline algorithm requires

linearithmic sorting, calculation of per-sentence metrics, and dot products, which are all linear
operations.

98

3.10 Parallelization

Algorithm 9 Iterative parameter mixing for online pairwise ranking optimization
(adapted from [Simianer et al., 2012]). Inputs: Number of epochs T , number of
shards Z, parallel training data I, learning rate η, gold-standard function g(·), pair
generation algorithm Q.

1: Partition data into Z shards, each of size S ← |I|/Z and distribute to machines.
2: procedure IterMixSGD

3: Initialize v← 0.
4: for epochs t← 0 . . . T − 1: do

5: for all shards z ∈ {1 . . . Z}: parallel do

6: wz,t,0,0 ← v

7: for all i ∈ {0 . . . S − 1}: do

8: Decode ith input with wz,t,i,0.
9: Generate training examples P using algorithm Qg.

10: for all examples xj , j ∈ {0 . . . |P| − 1}: do

11: wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
12: end for

13: wz,t,i+1,0 ← wz,t,i,|P|

14: end for

15: end for

16: Collect weights v← 1
Z

Z∑

z=1
wz,t,S,0.

17: end for

18: return v

19: end procedure

99

3 Learning Preferences from Static Reference Translations

9 requires an average operation after all workers have processed their current data
shard. This renders MixSGD trivial to implement, while IterMixSGD requires
more effort, collecting, averaging and re-distributing the weights between machines
or processes.

3.10.1 Feature Selection, Regularization & Multi-Task Learning

The proposed parallelization schemes give an incentive for an effective feature
selection approach. Since the number of sparse features in SMT approaches inőnity
in the worst case38, feature selection [Mladenić, 2006] and/or a sparsity inducing
regularization such as applying an ℓ1 norm penalty to the loss [Tsuruoka et al.,
2009] are inevitable. Furthermore, as Duh et al. [2010] show, sparse, lexicalized
features follow a Zipőan distribution Ð there are few common features, and a long
tail of rarely observed features. It is thus important to have means that counter-act
overestimation of these rare features. While parameter mixing helps, effectively
averaging weights and thereby attenuating weights of rare features, we show that
we can improve upon this simple approach.

In the linear model proposed in this work the issue is actually non-critical, since
a single dot-product between two large vectors is efficient, even without specialized
hardware. However the MT system’s decoder, available disk space and the band-
width of the network used for storing and distributing the weights are the limiting
factors.

In MT feature selection has been predominantly conőned to frequency cutoffs
in terms of word- or extraction frequencies [Eidelman et al., 2013a; Cherry and
Foster, 2012; Hopkins and May, 2011; Chen et al., 2017; Chiang, 2012], feature
binning [Chiang et al., 2008], or narrowly deőned feature templates [Chiang et al.,
2009]. Less frequently, frequency cutoffs have been used in conjunction with ℓ1
[Gimpel and Smith, 2012b] or ℓ2 regularization [Green et al., 2014a]. Frequency
cutoffs, as instances of forward selection [Draper and Smith, 1966], cannot take
the actual performance into account, and cannot be integrated in the loss function.
Regularization however, is an integral part of a loss function and can thus be more
effective. A loss with ℓ1 regularization:

min
w

∑

i

li(w,xi) + λ|w|1 (3.32)

(where |v|1 =
∑

i |vi| is the ℓ1 norm, and λ ≥ 0 determines the regularization
strength) rewards sparser models as well as more conservative updates.

38Assuming an online system which picks up new full form vocabulary on the fly while using rule
identity features.

100

3.10 Parallelization

Since adding ℓ1 regularization renders the loss function non-differentiable for zero
weights [Schmidt et al., 2009], a wide variety of solutions have been proposed, espe-
cially for regression problems: The Lasso approach proposed by Tibshirani [1994]
interprets minimizing Equation 3.32 as a constrained quadratic39 optimization
problem, with only a single constraint |w|1 ≤ λ, where λ is a hyperparameter40.
[Approximate] (sub-) gradient descent methods have been proposed by Schmidt
et al. [2007] and Cai et al. [2010] inter-alia. A straight-forward application of ℓ1
regularization can be achieved by using a sub-gradient (shown here by coordinate):

wj ← wj + η∇j (l(w,x)− λ sign(wj)) . (3.33)

However, as Tsuruoka et al. [2009] show, this approach does not produce sparse
results. A very simple approach of ℓ1 regularization which employs clipping to
actually enforce sparsity is proposed by Carpenter [2008], setting weights to zero
iff the ℓ1 penalty would cause a weight to switch its sign, łcrossingž zero, see
Algorithm 10.

Algorithm 10 ℓ1 regularization with clipping. Algorithm adapted from [Tsuruoka
et al., 2009].

wj ← wj + η∇j l(w
(t),x)

if wj > 0 then

w
(t+1)
j ← (0,wj − ηλ)+

end if

if wj < 0 then

w
(t+1)
j ← (0,wj + ηλ)+

end if

As Tsuruoka et al. [2009] point out, this algorithm is deőcient in the stochastic
setting, since features observed uniquely at the end of training are overvalued. They
propose to use a cumulative penalty to overcome this problem, as demonstrated
in Algorithm 11. In the algorithm, uj is a scalar corresponding to the amount of
penalty a weight could have received in the whole training process Ð accounting
for all examples where the feature did not actually őre:

uj =
λ

n

∑

i

η, (3.34)

39Using the least squares loss for regression.
40Note that, when using a fixed number of k features, one can find a always suitable setting of

λ which would have the same effect; An alternative to having to set a fixed regularization
strength are regularization path following methods, cf. [Mairal and Yu, 2012].

101

3 Learning Preferences from Static Reference Translations

and qj is the sum of penalties the weight has actually received:

qj =
t−1∑

s=1

w
(s−1)
j −w

(s)
j . (3.35)

Algorithm 11 ℓ1 regularization with cumulative penalty. Algorithm adapted from
[Tsuruoka et al., 2009].

wj ← wj + η∇j l(w
(t),x)

if wj > 0 then

w
(t+1)
j ← (0,wj − (uj + qj))+

end if

if wj < 0 then

w
(t+1)
j ← (0,wj + (uj − qj))+

end if

This algorithm effectively and appropriately enforces sparsity in w, which is why
we used it for our experiments.

ℓ2 regularization [Hoerl and Kennard, 1970] on the other hand can be directly
used in gradient-based methods (loss shown for SGD with a single example x,
omitting bias and label):

l(w) = (−⟨x,w⟩) + λ|w|22, (3.36)

(where |w|2 =
∑

i

w2
i) with the gradient:

∇l(w) = −x+ 2λw. (3.37)

Since ℓ2 regularization does not induce sparsity, but instead keeps the weights
close to the initial weights w0, we do not include it in our experiments.

3.10.1.1 Multi-Task Learning

Multi-task learning in ML is a way to improve generalization performance of an
algorithm by exploiting similarities shared between a number of different tasks
[Caruana, 1997]. In a basic application, tasks simply correspond to a number of
data sets or domains with a shared output space. The goal of multi-task learning
is then to exploit commonalities in the data for improving performance across
domains to learn instances of task-speciőc algorithms. Multi-task learning is a vast
őeld, with a variety of applications.

In contrast to the setup we have just described, multi-task learning can be
cast in a very general sense of trying to learn structures of (possibly unrelated)

102

3.10 Parallelization

tasks. Thrun and O’Sullivan [1996] present an approach using k-nearest neighbors
clustering to learn similarities between tasks which are encoded in a transfer matrix
that can then be used for the beneőt of a number of binary classiőcation tasks.
Ando and Zhang [2005] also propose learning a common structure of tasks, enabling
a semi-supervised learning approach. Multi-task learning of this kind is also used in
neural network learning and also for NLP: Collobert and Weston [2008] demonstrate
an architecture for using shared network components for predicting outcomes for a
number of output spaces, e.g. part-of-speech tags, chunks, named entity tags or
semantic roles.

The latter approaches exemplify parameter sharing, between different, but
possibly related tasks. Weights for the parameters are learned jointly. This
approach goes back to [Caruana, 1993], which suggests a joint neural network with
n output nodes for n tasks. Similar to [Collobert and Weston, 2008], this approach
can also be used to learn a multi-lingual machine translation system [Johnson et al.,
2016].

A different approach is presented by Evgeniou and Pontil [2004], who instead
of learning a common set of parameters, propose to use a joint regularization for
multi-task learning. The formulation generally is as follows:

w = w0 + vt, (3.38)

where w are the eventually used weights, w0 is a shared representation between
all tasks, and vt are weights for each speciőc task t. This is multi-task learning by
employing a joint regularization over tasks, possibly inducing sparsity. Since we
seek an efficient solution, we further investigate in this direction. Evgeniou and
Pontil [2004] try to learn a number of SVM systems, considering a joint weight
vector and learning to keep all weights close to each other. Cavallanti et al. [2010]
present an online multi-task perceptron algorithm, keeping weights close together
by joint (half-) updates. Both approaches do not induce sparsity.

In general, following Cavallanti et al. [2010], we can reformulate the multi-task
learning problem as follows:

W = [w1, . . . ,wZ]
T (3.39)

represents a stacked matrix of weight vectors for Z different tasks. The opti-
mization problem is changed accordingly:

W∗ = argmin
W

(
Z∑

z=1

NZ∑

n=1

l(wz,xn)

)

+Ω(W), (3.40)

where Ω(·) is a regularizer for a matrix, and NZ is the data for a shard Z. A
variety of possible matrix norms can be used for Ω: Yuan and Lin [2006] propose a

103

3 Learning Preferences from Static Reference Translations

group Lasso using the ℓ1/ℓ2 mixed-norm41:

λ||W||1,2 = λ
D∑

d=1

|Wd|2.

Their approach is effective but groups of features have to be deőned, since they
consider only a single task. Argyriou et al. [2008], Argyriou et al. [2007] and
Obozinski et al. [2010] apply ℓ1/ℓ2 regularization to multi-task learning, penalizing
the ℓ1 sum of ℓ2 norms of the feature columns, effectively reducing the number of
non-zero columns in W. They also show that ℓ1ℓp regularization for multi-task
learning is a viable extension of ℓ1 regularization in single-task learning.

Other norms and grouping methods were also proposed, e.g. Zhao et al. [2009]
use the ℓ1ℓ∞ norm42 and hierarchical groups for linear regression. Quattoni et al.
[2009] propose a projected gradient method for ℓ1ℓ∞ regularization.

Multi-task learning is closely related to domain adaptation, e.g. [Daumé, 2009]
can be considered as an offline implementation of [Evgeniou and Pontil, 2004], as
well as [Finkel and Manning, 2009], using priors for regularization.

ℓ1 and ℓ1/ℓ2 regularization for multi-task learning also have parallels to domain
adaptation. Martins et al. [2011] present a group-Lasso approach for feature selec-
tion in structured prediction, in which ℓ1/ℓ2 regularization is deőned over manually
selected, non-overlapping groups of features. Lal et al. [2006] present a feature
selection framework which covers various regularization approaches. Perkins et al.
[2003] also propose regularization for feature selection, in particular a combination
of ℓ2, ℓ1 and ℓ0 norms43 as a sum of regularization terms. Their incremental, itera-
tive variant of ℓ1 regularization is similar to the iterative algorithm presented by
Obozinski et al. [2010]. ℓ1-based regularization, in the context of feature selection,
can be considered as a method to automatically learn a feature set with a task at
hand [Perkins et al., 2003].

Multi-task learning has been proven to be an effective technique to make use of
related tasks, effectively boosting performance on all tasks, see e.g. the overview
presented by Argyriou et al. [2008]. But in NLP and IR, multi-task learning
has not been studied extensively for linear models44. However, Chapelle et al.
[2011] present a boosting approach to ℓ1 regularization for multi-task learning for
IR, and Dredze et al. [2010] propose a perceptron-style algorithm for multi-task
learning of a number of NLP tasks. In SMT, multi-task learning is scarcely used.

41ℓ1 sum of ℓ2 norms of columns.
42This penalizes the ℓ1 sum over the maximum values of each column of each column, instead of

the ℓ2 norm.
43The ℓ0 norm simply sums up all non-zero entries in a vector, i.e. for a vector v

∑

i v
0
i , iff vi ≠ 0.

44But, as noted previously, multi-task learning in the form of parameter sharing is popular in
neural network learning.

104

3.10 Parallelization

Domain adaptation is much more in focus, and multi-task learning is only used
for multi-domain adaptation, e.g. Cui et al. [2013] propose to use in-domain and
general domain language and translation models which are then tuned jointly in a
multi-task learning setup. But multi-domain adaptation is otherwise not thoroughly
explored45 for SMT [Sankaran et al., 2012]. A notable exception is presented by
Duh et al. [2010], who employ multi-task learning via ℓ1/ℓ2 regularization for k-best
reranking: They employ ℓ1/ℓ2 regularization for discovering a lower dimensional
feature space that works well for most parts of the data. Each k-best list is treated
as a separate task, and features are selected with ℓ1/ℓ2 regularization as noted
above.

Implementation

For our implementation we seek a feature selection/multi-task learning method
that 1) effectively reduces the number of features in the model, and 2) is compatible
with our distributed stochastic gradient-based optimization scheme. Argyriou
et al. [2008]’s proposed convex optimization problem cannot be approached using
gradient-based optimization. Ando and Zhang [2005]’s gradient-based optimization
algorithm requires several iterations with differing hyperparameters, which is
infeasible in online tuning for SMT. Yuan and Lin [2006]’s optimization is also not
gradient-based. Obozinski et al. [2010]’s ℓ1/ℓ2 regularization multi-task learning
approach is based on gradients, but implements a form of forward46 feature selection,
which is inefficient for SMT tuning with sparse features, since an empty model
(all zeroes) is not effective, and re-evaluating all translation pairs (and possibly
re-decoding) is not feasible. However, instead, we may adapt Obozinski et al.
[2010]’s gradient-based forward feature selection for use as a backward feature
selection method, following the recursive feature elimination algorithm of Lal et al.
[2006], using the őnal weights (with applied gradients) instead of the true gradient.

In our previously proposed algorithms, it is straight-forward to consider each
processed shard as a distinct task to apply multi-task learning for feature selection.
Our proposed algorithm is depicted in Algorithm 12.

In each epoch of the algorithm, and for each shard, a single iteration of SGD is
performed, starting from shared identical weights. After all shards have őnished,
the shard- or task speciőc weight vectors wZ are collected and stacked as rows in
a matrix W ∈ RZ×d, where d is the current number of features (columns) and Z

45Mathur et al. [2014] present an application of online multi-task learning [Cavallanti et al., 2010]
for multi-user adaptation for SMT.

46Forward and backward feature selection [Kohavi and John, 1997] are distinguished by whether
they start with a full feature set from which features are removed (backward), or, if the initial
feature set is empty and features are subsequently added (forward feature selection).

105

3 Learning Preferences from Static Reference Translations

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

WT
1 [6 4 0 0 0] [6 4 0 0 0]

WT
2 [0 0 3 0 0] [3 0 0 0 0]

WT
3 [0 0 0 2 3] [2 3 0 0 0]

Column ℓ2 norm: 6 4 3 2 3 7 5 0 0 0
ℓ1 sum: ⇒ 18 ⇒ 12

Figure 3.5: ℓ1/ℓ2 regularization enforcing feature selection. Example adapted from
[Simianer et al., 2012].

is the number of shards:

W = [w1, . . . ,wZ]
T
. (3.41)

We then may calculate the ℓ1/ℓ2 norm of the feature columns of W, as exempliőed
in Figure 3.5. The number of features kept in the model can either be determined
by setting the λ parameter as in:

Z∑

z=1

lz(W
(z)) + λΩ(W), (3.42)

or by selecting a őxed pre-deőned47 number of features K after each epoch. We
opt for using the latter since we want the model to have a pre-determined size.
The reduced model is then used as a starting point for each shard in the following
epoch.

3.10.1.2 Asynchronous Parallelization

In the current implementation of parallelization, a full averaged model computed
from the weight matrix W is only observed after a single epoch of parallel training.
Depending on the size of the shards or tasks, this could be a too long delay before
obtaining a joint model.

As an alternative to this parallelization scheme, Dean et al. [2012] propose an
asynchronous variant of SGD with strong empirical results compared to vanilla
synchronous SGD (without parallelization) with largely reduced running time.
An asynchronous variant of their proposed scheme adapted for pairwise ranking
optimization is depicted in Algorithm 13. In the algorithm, parallel sentences (an-
notated with the respective per-sentence grammar) are distributed in a round-robin
strategy to worker processes running in parallel. The current model parameters
w, which are maintained within the main loop, are also distributed to the worker

47Each threshold k corresponds to a setting of λ.

106

3.10 Parallelization

Algorithm 12 Iterative mixing algorithm with feature selection (adapted from
[Simianer et al., 2012]). Inputs: Number of epochs T , number of shards Z, parallel
training data I, learning rate η, gold-standard function g(·), pair generation
algorithm Q, regularization parameter k.

1: Partition data into Z shards, each of size S = I/Z and distribute to machines.
2: procedure IterMixSelSGD

3: Initialize v← 0.
4: for epochs t← 0 . . . T − 1: do

5: for all shards z ∈ {1 . . . Z}: parallel do

6: wz,t,0,0 ← v

7: for all i ∈ {0 . . . S − 1}: do

8: Decode ith input with wz,t,i,0.
9: Generate training examples P using algorithm Qg.

10: for all pairs xj , j ∈ {0 . . . |P| − 1}: do

11: wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j)
12: end for

13: wz,t,i+1,0 ← wz,t,i,|P|

14: end for

15: end for

16: Collect/stack weights W← [w1,t,S,0| . . . |wZ,t,S,0]
T

17: Select top K feature columns of W by ℓ2 norm and set
18: for k ← 1 . . .K do

19: v[k] = 1
Z

Z∑

z=1
W[z][k].

20: end for

21: end for

22: return v

23: end procedure

107

3 Learning Preferences from Static Reference Translations

Algorithm 13 Asynchronous optimization with iterative feature selection,
AsyncSGD. Inputs: Number of epochs T , number of workers Z, parallel data I,
feature selection frequency F , number of features K, learning rate η, gold-standard
function g(·), pair generation algorithm Q.

1: procedure Main Loop(I, T, Z)
2: w← 0

3: Prepare Z worker processes
4: Setup queue U for incoming weight updates
5: for epochs t← 0 . . . T − 1: do

6: for all i ∈ {0 . . . |I| − 1}: do

7: Send ith input, current weights w, and pointer to queue U to next
available worker by round robin allocation.

8: for all u ∈ U do

9: w← w + u
10: if i+ 1 mod F is 0 then

11: Select top K feature columns of w by ℓ2 norm
12: for k ← 1 . . .K do

13: w′ = w[k]
14: end for

15: w← w′

16: end if

17: end for

18: end for

19: end for

20: return w

21: end procedure

22: procedure Worker(i, w, η, g, Q, U)
23: Decode input i with w.
24: Generate training examples P using algorithm Qg.
25: for all pairs xj , j ∈ {0 . . . |P| − 1}: do

26: wj+1 ← wj − η∇lj(wj)
27: end for

28: U ← U ∪w|P|

29: end procedure

108

3.10 Parallelization

processes. Model updates from the workers are put into a queue, which is regularly
checked within the main process, and its contents are incorporated into the main
copy of the model once available. Our proposed implementation is designed in such
a way, that a single update consists of a mini-batch, which corresponds to all pairs
extracted from a single k-best list.

We also incorporate a heuristic for feature selection, selecting K features after
having processed F mini-batches. Since there is no weight matrix available, but
only single weight vectors, we propose to select weights simply by their ℓ2 norm,
selecting a őxed number of K features with maximal norm value.

3.10.2 Evaluation

We őrst explore the effectiveness of our general parallelization scheme on the
Nc@ data set, training on the full bitext. Results are depicted in Table 3.14.
Statistical signiőcance between result differences for the test set are assessed with
a approximate randomization test for the BLEU score [Riezler and Maxwell, 2005],
as described in Section 2.3.2.4. Signiőcant results are annotated by referencing the
respective experiment in brackets, where p ≤ 0.05.

Using only the Dense feature set, the algorithms48 show about the same per-
formance, without signiőcant differences. However, using Sparse features, the
iterative mixing approaches perform better than mixing once. Feature selection by
ℓ1/ℓ2 regularization (selecting 100,000 features49 after each epoch) results in some
minor, but signiőcant gains over all other algorithms. All algorithms are run for 15
epochs and use őxed random shards with a size of 1,000 segments, if applicable.

Another parameter we explore is sharding: Since our general domain data has
no obvious partitioning, we use random sharding. There are however two variants
to implement this Ð generate shards once before optimization, or randomly re-
sharding after each epoch. Results for these experiments on Nc∗ and Wmt13 data
sets presented in Tables 3.15 and 3.16 respectively. Since we tune on a smaller
tuning set for Wmt13 we only select 10,000 features after each epoch.

According to these results there is no difference between randomly sharding once
or repeatedly. It is also worth to note that, despite having introduced a random
factor in training, there is no large variance observable in the results for repeated
experiments, as constituted by standard deviations. All experiments were repeated
three times.

Results for the proposed asynchronous optimization algorithm contrasted to
the synchronous counterparts are depicted in Table 3.17. Both algorithms peri-
odically selected 10,000 features. Both synchronous and asynchronous variants
were trained for 15 epochs, using randomized data (either randomized shards

48Note that we omitted the IterMixSelSGD algorithm.
49In preliminary experiments we determined that a fixed model size of 100,000 represents a

practical tradeoff between decoding speed, model size and communication overhead.

109

3 Learning Preferences from Static Reference Translations

Nc@

System Dev. Test Test

Dense, MixSGD(1) 25.7 27.9
Dense, IterMixSGD(2) 26.1 27.9

Sparse, MixSGD(1) 26.1 27.9
Sparse, IterMixSGD(2) 26.4 (1)28.6
Sparse, IterMixSelSGD(3) 26.8 (1,2)28.8

Table 3.14: Comparing different, synchronous parallel optimization schemes on the
small Nc@ data set, training on the full bitext with Dense and Sparse

feature sets. Signiőcance is assessed with approximate randomization
tests between all experiments in a group, signiőcant improvements are
denoted by the number of the respective algorithms. Table adapted
from [Simianer et al., 2012].

Nc∗

System Dev. Test

Once 26.3 ±0.0
Re-shard 26.2 ±0.0

Table 3.15: Random re-sharding per epoch versus sharding once on the Nc∗ data
tuning on the bitext with Sparse features.

Wmt13

System Dev. Test1 Test1 Dev. Test2 Test2

Once 24.9 ±0.1 23.1 ±0.2 26.1 ±0.1 25.4 ±0.1
Re-shard 24.9 ±0.0 23.0 ±0.1 26.1 ±0.1 25.5 ±0.1

Table 3.16: Random re-sharding per epoch versus sharding once on the Wmt13

data set using the TuningL data for training.

110

3.10 Parallelization

Wmt13

System Dev. Test1 Test1 Dev. Test2 Test2

IterMixSelSGD, Once 24.9 ±0.1 23.1 ±0.2 26.1 ±0.1 25.4 ±0.1
IterMixSelSGD, Re-shard 24.9 ±0.0 23.0 ±0.1 26.1 ±0.1 25.5 ±0.1
AsyncSGD, 2 Workers 25.0 ±0.1 23.1 ±0.1 26.2 ±0.2 25.6 ±0.1
AsyncSGD, 4 Workers 24.8 ±0.1 23.3 ±0.1 26.4 ±0.1 25.3 ±0.2
AsyncSGD, 10 Workers 24.8 ±0.1 23.3 ±0.1 26.4 ±0.0 25.6 ±0.1
AsyncSGD, 20 Workers 23.6 ±0.6 21.8 ±0.9 24.8 ±0.6 24.6 ±0.6

Table 3.17: Synchronous and asynchronous parallelized SGD with ℓ1/ℓ2
regularization-based feature selection using the Sparse feature set
on the TuningL data.

or random permutations of the training data). We used two, four, ten and 20
parallel workers for the asynchronous algorithm, and ten shards for the synchronous
algorithm. The segments of the training data are distributed in a round-robin
fashion, skipping workers that did not return yet. Each worker sends its weight
vector immediately after each mini-batch, and receives a new segment along with
a newly computed global weight vector. Features are selected by the main loop
after 100 total segments. All experiments were repeated three times to account for
optimizer instability. We use the TuningL data set for tuning, and we employ the
margin perceptron (cf. Section 3.10.3) with the Sparse feature set.

Results for both algorithmic variants are very similar, the asynchronous version
however breaks down when using more than ten workers, which also results in
a slightly increased standard deviation. The variation for the other settings is
negligible.

3.10.3 Perceptron Variants

The perceptron algorithm [Rosenblatt, 1958], despite its simplicity, has had tremen-
dous success in various applications of ML and is well studied. Naturally, variants
of the original algorithm have been developed.

The voting perceptron of Freund and Schapire [1999] is a maximum margin
approach [Vapnik, 1982] of the original perceptron algorithm, which addresses a
practical issue: When using a őxed learning rate throughout training, the perceptron
has a bias towards the last seen training examples that caused updates. In the
voted perceptron algorithm all versions of the weights and biases are stored, along
with their survival rate (number of consecutive correct classiőcations on the training
data). The prediction is then carried out by voting between the individual weight

111

3 Learning Preferences from Static Reference Translations

vectors:

sign

(
n∑

i=1

ci sign(⟨wi,x⟩)

)

, (3.43)

where ci is the survival rate for weight vector wi during training. The method
works favorably compared to just using the őnal weight vector. The method is
neither memory nor compute efficient since every version of the weights have
to be stored and applied for prediction. Alternatively, the predictions may be
averaged (or just added), resulting in comparable performance but depicting the
same drawbacks:

sign

(
∑

i

ci⟨wi,x⟩

)

. (3.44)

Collins [2002] propose the related averaged perceptron algorithm, where the őnal
prediction is done by using averaged weights:

1
∑

i ci

⟨
∑

i

ciwi,x

⟩

. (3.45)

Collins [2002] also show superior performance over using the őnal weights.

The perceptron algorithm is deeply related to the support vector machine [Cortes
and Vapnik, 1995] when using a hinge loss type objective [Collobert and Bengio,
2004]:

lhinge = ((1− ⟨x,w⟩)y)+ . (3.46)

Geometrically, this loss formulation can be interpreted as requiring a margin of
at least 1.0 to the decision boundary. The sub-gradient also reŕects that:

∇lhinge =

{

−xy if ⟨x,w⟩y ≤ 1,

0 else.
. (3.47)

Using this update rule has a caveat compared to the standard perceptron update:
The vanilla perceptron algorithm has no relevant hyperparameters when using 0 as
initial weights, since the scale of the weight vector is irrelevant for the prediction
with sign(·) and the learning rate η can thus be omitted (effectively set to 1.0)50.
When using the margin perceptron, concrete values of the prediction function
determine whether the margin is violated or not, and thus the learning rate η is

50This is also applicable to non-zero initial weights, since they “fade away” during the training in
some sense.

112

3.10 Parallelization

Nc∗ Dense

System Dev. Test

Mert, Dense 25.8 ±0.0
Dtrain, Dense, Regular 25.2
Dtrain, Dense, Margin 26.3

Dtrain, Sparse, Regular 25.5
Dtrain, Sparse, Margin 26.7

Figure 3.6: Perceptron variants on Nc∗ data.

Nc∗∗ Dense

System ↓ Dev. Test

Dense, Best 22.4
Dense, Average 23.0

Sparse, Best 22.2
Sparse, Average 22.7

Table 3.18: Comparing averaged and single best performing weights for Dtrain

on development test.

used to scale the updates and effectively the weight vector. In this work we use a
őxed margin of 1.0 and search for adequate learning rates via a coarse grid search.
In practice, the learning rate determines the total number of considered pairs, the
smaller the rate, the more possible margin violations, the more possible updates.

3.10.3.1 Evaluation

We őrst evaluate the margin perceptron on different data sets in Tables 3.6, 3.7
and 3.8. Overall, large improvements can be observed for the margin perceptron
compared to the standard update rule for all three data sets, but more emphasized
on the larger overall data sets, Wmt13 and Wmt15. The margin perceptron also
outperforms the Mert algorithm with Dense features most of the time. Note that,
also when using the margin perceptron, the training procedure is still deterministic
and thus has no variation. In Table 3.7 we observe less or no gains with the margin
perceptron when using more training data (TuningL or the bitext) Ð here, the
advantage of performing more updates seems to be less pronounced.

113

3 Learning Preferences from Static Reference Translations

Wmt13

System Dev. Test1 Dev. Test2 Test1 Test2

Tuning Data: TuningS

Mert, Dense 23.4 ±0.4 25.0 ±0.3 21.8 ±0.2 24.3 ±0.3
Dtrain, Dense, Regular 18.3 19.1 16.7 19.2
Dtrain, Dense, Margin 23.5 24.8 22.2 24.1

Dtrain, Sparse, Regular 19.6 20.3 18.1 20.6
Dtrain, Sparse, Margin 23.6 25.1 22.3 24.3

Tuning Data: TuningL

Dtrain, Sparse, Regular 24.6 25.9 22.9 25.0
Dtrain, Sparse, Margin 24.9 ±0.0 26.1 ±0.1 23.0 ±0.1 25.5 ±0.1

Tuning Data: Bitext

Dtrain, Sparse, Regular 23.4 24.8 22.0 23.9
Dtrain, Sparse, Margin 23.4 25.1 22.4 24.3

Figure 3.7: Perceptron variants on Wmt13 data.

Wmt15

System Dev. Test Test

Mert, Dense 21.8 ±0.0 26.5 ±0.0
Dtrain, Regular 17.0 20.5
Dtrain, Margin 21.9 27.1

Dtrain, Sparse, Regular 19.1 22.3
Dtrain, Sparse, Margin 22.7 27.5

Figure 3.8: Perceptron variants on Wmt15 data.

114

3.11 Training on the Bitext

Lastly, we evaluate the performance of the averaged perceptron in different
training settings using the Nc∗∗ data and the regular perceptron. The őnal weight
vectors for all epochs are averaged by summing them up and dividing by the number
of epochs. Results are depicted in Table 3.18. For both feature settings, averaging
results in an improvement of about 0.5 %BLEU over the best single weights. This
is is expected, since that all weights are just a snapshot of the optimization, and the
seen training data can change signiőcantly throughout the process. We therefore
applied averaging to all other experiments.

3.11 Training on the Bitext

We previously showed that training on the full bitext of the machine translation
system can be advantageous under some circumstances, e.g. when having not
enough in-domain data for tuning. There have been few attempts to use the
parallel training data (the bitext) for more than estimation of feature values for
dense translation model features. This has a number of reasons:

1. The raw amount of processing needed for generating meaningful training data
for a discriminative training algorithm is time consuming, e.g. generating
per-sentence-grammars or k-best lists for the full bitext.

2. Since the bitext is also used for extracting and estimating the generative
parts of the translation model, training sparse features on the same bitext
that was used for extracting the phrase-table or grammar is prone to overőt
[DeNero et al., 2006].

Despite these issues, training sparse features reliably without large data samples
appears infeasible, since most features that we previously described occur very
infrequently (if at all).

Some attempts have been made to carry out large-scale discriminative training
for SMT: Xiao et al. [2011] scale up Blunsom and Osborne [2008]’s discriminative
log-linear model using a fast translation forest generation approach, to train a
model with 14M features on 500K sentence pairs.

Eidelman et al. [2013c,b] describe a variant of the Mira algorithm using the
MapReduce framework [Dean and Ghemawat, 2008] for parallelization, resulting in
an approach similar to our proposed IterMixSelSGD tuning algorithm. They use
portions of the bitext ranging from 5K to 50K segments. To counter act overőtting
on the training data, a variant of jackknifing [Quenouille, 1956] is employed: Similar
to cross-validation, estimating the grammars used for decoding a single fold using
the remaining n−1 folds. They show however no improvement over simple training
on development data. Hasler and Haddow [2012] apply the same technique to train

115

3 Learning Preferences from Static Reference Translations

up to 600K topic features for multi-domain adaptation on about 150K segments,
resulting in a gain of 0.1 to 0.5 %BLEU points compared to just using development
data.

Maximum expected BLEU training [Smith and Eisner, 2006; Rosti et al., 2010;
He and Deng, 2012] has been applied to training sparse features from the bitext.
Setiawan and Zhou [2013] train 150M lexical features on a subset of a 550K bitext,
resulting in +0.5 %BLEU compared to tuning on a single development set. Auli et al.
[2014] present an approach for training parameters of a phrase-based reordering
model with 3M features on 300K training sentences with expected BLEU training,
resulting in 0.8 %BLEU improvement in a reranking experiment. In Wuebker
et al. [2015b]’s largest experiment, a model consisting of 45M features, including
a discriminative phrase-table51, is trained on 4M sentence pairs resulting in a 0.6
%BLEU improvement compared to a baseline trained on a single development
set. All presented large-scale expected BLEU results were achieved with a single
generation step over the training data, i.e. decoding once. On the one hand, this is
due to the used loss function which depends on the weights, and due to efficiency
on the other hand. In contrast to Setiawan and Zhou [2013], Wuebker et al. [2015b]
employ a leave-one-out method [Zollmann and Sima’an, 2005; Wuebker et al., 2012]
on a per-segment basis when generating their k-best lists for training, showing a
slight improvement when using this method.

Green et al. [2013b] use pairwise ranking with ℓ1 regularization to learn from a
small portion of the bitext, and show that it is inadequate for peak performance
on a in-domain test set. Liu et al. [2013] also employ pairwise ranking, both with
and without a feature grouping algorithm, showing deterioration compared to a
Mert baseline both with an unregularized and a ℓ1 regularized pairwise ranking
model with sparse and dense feature sets. Only when using the feature grouping
method an improvement is achieved (1.2 %BLEU). Flanigan et al. [2013] propose
a combination of Gimpel and Smith [2012b]’s structured prediction loss and Mert

for large-scale learning. In their experiments, using a jackkniőng technique, they
improve maximal by 1.1 %BLEU using a 300K bitext over a Mert baseline on
development set.

Lastly, in a different line of work, Braune et al. [2016] train a large-scale discrim-
inative rule selection classiőer on 1.5M sentences, resulting in a gain of 0.4 %BLEU
over a baseline without rule selection.

Overall, using the bitext for discriminative training in SMT has resulted in
modest gains at best.

For our implementation of training on the bitext, we can straight-forwardly apply
the proposed distributed algorithms, using a larger number of shards. We employ

51This is the same as the rule-id features used in our work — one feature per phrase-pair.

116

3.11 Training on the Bitext

Nc∗

System Dev. Test

Mert, Dense 25.8 ±0.0
Dtrain, Dense, Regular 25.2
Dtrain, Dense, Margin 26.3

Dtrain, Sparse, Regular 25.5
Dtrain, Sparse, Margin 26.7

Dtrain, Sparse, Regular, Bitext 26.3

Dtrain, Sparse, Margin, Bitext 26.2

Table 3.19: Highlighting the performance of training on the bitext on Nc∗ data in
comparison to Mert and using the margin perceptron loss.

model averaging as well as feature selection. During preliminary experiments we
observed strong overőtting effects when using the Sparse feature set without
applying leave-one-out estimation for computing the statistics for the features of
the translation model. Applying the improved estimation somewhat diminished
the overőtting effect. In contrast to Flanigan et al. [2013], we do not use shard-
speciőc language models, which could lead to inŕated language model scores for
rare sequences and thus to an overly large weight for associated features. We found
that pruning singleton N -grams [Sundermeyer et al., 2011] for all 1, . . . , N was a
remedy to the overőtting that we observed.

3.11.1 Evaluation

We evaluate the IterMixSelSGD algorithm on Nc (130K segments), Wmt13

(4.5M segments), and Wmt15 (2M segments) data sets. For each setup we provide
averaged Mert baselines using the Dense feature set. Shard size was set to 1K,
the number of selected features per epoch to 100K for all experiments.

Results for Nc∗ data are depicted in Table 3.19: Our pairwise ranking algorithm
without using the margin perceptron is clearly deőcient, but a scaling behavior
from tuning Dense features on the development set to training Sparse features
on the training data is apparent, an improvement of overall 1.1 %BLEU. Using the
margin perceptron we can observe almost equal performance for training on the
bitext and training Dense features on the small development set. However, there
is no difference training on the bitext using the margin perceptron or the vanilla
perceptron loss function. The best result is achieved using the margin perceptron
and Sparse features on the small development set.

117

3 Learning Preferences from Static Reference Translations

Ep@

System Dev. Test [Ep] Test2 [Ep] Test1 [Crawl] Test2 [Crawl]

Tuning Set: Tuning [Ep]

Dense, SGD 25.6 26.4 ś ś
Sparse, SGD 27.8 28.4 ś ś

Tuning Set: Bitext [Ep]

Sparse, IterMixSelSGD 28.0 28.6 19.1 17.3

Tuning Set: Tuning [Crawl]

Dense, SGD ś ś 15.4 14.4
Sparse, SGD ś ś 17.8 16.8

Table 3.20: Highlighting the performance of training on the bitext on Ep@, espe-
cially how the learned weights carry over to two out-of-domain test
sets. Table adapted from [Simianer et al., 2012].

We performed a set of experiments with the medium sized Ep@ data, see Table
3.20. Besides the largely improved results through the addition of the Sparse

feature set, we observe that training on the bitext with IterMixSelSGD gives
the best results on in-domain test sets. In further experiments we compare the
performance of a system where training and tuning data differ considerably (legal
versus news data): For this we used the existing models trained on Ep@ data, as
well as a model tuned on the in-domain tuning set from the Crawl data. The
in-domain tuning results on two test sets are depicted in the last two rows of
Table 3.20. Again the Sparse features help considerably. The results from the
experiment applying the weights learned on the full Ep@ bitext are marked in
bold in the same columns, and show that the weights learned and selected on Ep@

data also perform very well on out-of-domain data, a great improvement over the
in-domain tuning results52.

For Wmt15 we omitted the experiment with the margin perceptron on the
bitext, since there was no difference on the smaller Nc∗ data. On this data set,
results shown in Table 3.21, the standard pairwise ranking is again clearly deőcient
compared to Mert. But improved results are obtained by scaling the feature
set as well as the data, up to an improvement of about 5.6 %BLEU. The margin
perceptron is far superior in both feature settings, clearly improving over Mert by
about 1 %BLEU when using Sparse features.

52But note that the training data for the generative models is also the one from Ep@ experiments.

118

3.11 Training on the Bitext

Wmt15

Setup Dev. Test Test

Mert, Dense 21.8 ±0.0 26.5 ±0.0
Dtrain, Dense, Regular 17.0 20.5
Dtrain, Dense, Regular, Bitext 20.7 25.0
Dtrain, Dense, Margin 21.9 27.1

Dtrain, Sparse, Regular 19.1 22.3
Dtrain, Sparse, Regular, Bitext 21.9 26.1
Dtrain, Sparse, Margin 22.7 27.5

Table 3.21: Highlighting the performance of training on the bitext on Wmt15 data
in comparison to Mert and using the margin perceptron loss.

Wmt13

System Dev. Test1 Dev. Test2 Test1 Test2

Tuning Data: TuningS

Mert, Dense 23.4 ±0.4 25.0 ±0.3 21.8 ±0.2 24.3 ±0.3
Dtrain, Dense, Regular 18.3 19.1 16.7 19.2
Dtrain, Dense, Margin 23.5 24.8 22.2 24.1

Dtrain, Sparse, Regular 19.7 20.4 18.0 20.3
Dtrain, Sparse, Margin 23.6 25.1 22.3 24.3

Tuning Data: TuningL

Dtrain, Sparse, Regular 24.6 25.9 22.9 25.0
Dtrain, Sparse, Margin 24.9 26.1 23.0 25.5

Tuning Data: Bitext

Dtrain, Sparse, Regular 23.4 24.8 22.0 23.9
Dtrain, Sparse, Margin 23.4 25.1 22.4 24.3

Table 3.22: Highlighting the performance of training on the bitext on the large
Wmt13 data in comparison to Mert and using the margin perceptron
loss.

119

3 Learning Preferences from Static Reference Translations

Results for the largest data set are depicted in Table 3.22. The standard algo-
rithm is once more deőcient. Results recover when the margin perceptron loss is
used, which also scales well on the development data. Training on the bitext with
either the standard- or the margin loss gives similar results, with a slight advantage
for the margin perceptron. Since this variant has a hyperparameter this approach
is very inefficient, without resorting to auto-adaptive learning rates53. However,
the performance is merely on par with the Sparse feature setting on the small
development set. The best performance on all test sets is achieved on the large
development set with the margin perceptron and Sparse features, improving over
Mert by 1.2 %BLEU on both test sets.

For this set of experiments we can conclude that training on high-quality devel-
opment sets that are close to the test data is superior to training on very large
data sets, even using a large number of Sparse features, with the exception when
there is a emphasized mismatch between the training data of the generative models
and the test data.

3.11.2 Efficient Implementation

Our largest experiment required a large amount of computational resources: Since
a joint grammar is infeasible to produce, we build per-sentence grammars for every
segment in the training data. These grammars have an average size of 1 megabyte
when compressed with gzip54. Training time is a number of weeks.

The proposed sharding scheme őts well in the MapReduce programming model
[Dean and Ghemawat, 2008]: Input, are (conjoined) source-target pairs with
the respective per-sentence grammar. In the mapping phase, shuffled data is
automatically distributed to a predeőned number of mappers, which are instances
of per-shard optimizers according to Algorithm 12. The output of each shard is
a weight vector, represented as key-value pairs, where the key is a unique string
representation, and the value is the learned weight of the feature. In MapReduce,
these key-value pairs are automatically and efficiently transferred to a number of
pre-deőned reducers, which are guaranteed to receive every key/value pair with a
given key. In our implementation, we employ another phase preceding the reducer,
which has the same interface as the reduce phase. In this so-called combiner -phase
we implement per-column averaging and calculation of the ℓ2 norm. The following
single reducer process then implements the őxed cutoff by ℓ1 norm and redistributes
the reduced weight vector for a new mapping round for optimization.

We use the hadoop55 framework which implements the above described interface

53Using auto-adaptive learning rates, the problem of synchronizing learning rates is introduced
in the parallel setting.

54https://tools.ietf.org/html/rfc1952
55http://hadoop.apache.org

120

https://tools.ietf.org/html/rfc1952
http://hadoop.apache.org

3.12 Further Experiments

Nc∗

System Dev. Test

Mert 25.8 ±0.00
Mira 26.0
Dtrain 26.3

Dtrain, Struct. 26.2

Table 3.23: Results using the Mira algorithm in comparison to other methods on
Nc∗ data and the Dense feature set.

efficiently, with automatic re-distribution of data processing in case of hardware
failures. The proposed scheme can also be implemented using off-the-shelf batch
processing systems, such as Grid Engine [Gentzsch, 2001] or Slurm [Yoo et al.,
2003].

3.12 Further Experiments

In this section we present further experiments on a wider range of data sets using
the algorithms proposed in the previous sections. We also provide more empirical
comparison to two other tuning algorithms, Mert and Mira.

3.12.1 Comparison to Mira

In Table 3.23 we compare the Mira algorithm, as implemented in the cdec frame-
work (see Section 3.6.2), to Mert (see Section 3.6.1) and our non-parallelized
baseline algorithm using the margin perceptron loss. Mira’s objective is optimized
via SGD, and a full sweep over learning rates was performed.

The results in Table 3.23 show that Mert and Mira perform almost identical,
and that there is only a slight advantage for Dtrain with multipartite training
data or the structured prediction approach with hope- and fear translations.

To further investigate the performance of the Mira and Dtrain implementa-
tions, we carried out further experiments on the large Wmt13 data set, using both
Dense and Sparse feature sets. For this experiments we performed a full sweep
over all hyperparameters of cdec’s Mira implementation, as described in Section
3.6.2. When using Dense features, the results of all three algorithms are similar,
only the large variance in the Mert results stands out. In the Sparse setting,
Mira and Dtrain perform similarly, with a minor advantage for Dtrain.

121

3 Learning Preferences from Static Reference Translations

Wmt13

System Dev. Test1 Test1 Dev. Test2 Test2

Mert, Dense 23.4 ±0.4 21.8 ±0.2 25.0 ±0.3 24.3 ±0.3
Dtrain, Dense 23.5 22.2 24.8 24.1
Mira, Dense 23.4 22.3 25.0 24.1

Dtrain, Sparse 23.6 22.3 25.1 24.3

Mira, Sparse 23.5 22.2 24.6 24.0

Table 3.24: Results using the Mira algorithm in comparison to other methods on
Wmt13 data and Dense and Sparse feature sets.

These results suggest on the one hand that discriminative training techniques
can outperform the traditional, and well-studied Mert algorithm on small and
large data settings. On the other hand these results show, that there is not much
difference, if at all, using discriminative algorithms based on pairwise differences if
hyperparameters are adjusted for peak performance for all compared algorithms.

3.12.2 Multi-Task Learning by Regularization

Until now, we we presented ℓ1/ℓ2 regularization as a means for feature selection
in a parallelized training algorithm, seeking a robust sparse solution. When
translating patent data, we have the possibility to test whether real-world, manual
classiőcations of language material can be used to train overall better performing
MT systems by exploiting similarities discovered within the data.

3.12.2.1 Experimental Setup

We used training, development and test data from the PatTR corpus [Wäschle and
Riezler, 2012b] for the English-German language pair. On the top level, patents are
classiőed into eight distinct sections, denoted A-H (see Table 2.1 for a listing). For
our experiments, the training data consists of a uniform sample from all sections,
which in total results in about 1M parallel sentence pairs. For development and
testing we extract 2K parallel sentences each for each individual class A-H from a
separate set of patents (split by year and family identiőer). Additionally, using the
same procedure as for the pooled training data, a pooled test set of 2,000 segments
is constructed, with all sections evenly represented.

This setup allows for a number of different data conőgurations for training:

• Independent: For each IPC class, A-H, train individual models using only
the respective development set;

122

3.12 Further Experiments

Independent0 Pooled1 Pooled-Cat2

Pooled Test ś 51.2 51.2

A 54.9 (1,3)55.3 (1)55.2
B 51.5 51.5 (1,2)51.7
C (2,3)56.3 (3)55.9 55.7
D 49.9 (1)50.3 (1)50.3
E (2)49.2 49.0 (2)49.1
F (2,3)51.3 51.0 51.1
G (2)49.6 49.4 49.6
H 49.4 49.5 (1,2)49.7
Average 51.5 51.5 51.5

Table 3.25: Mert tuning on the Independent, Pooled, and Pooled-Cat con-
őgurations. Signiőcance testing is performed by approximate random-
ization (comparing results within the same row). Signiőcantly superior
results are denoted by preőxed indexes referring to the respective tuning
set if p < 0.05. Table adapted from [Simianer and Riezler, 2013].

• Pooled: Use a joint development set of 2K segments where all IPC sections
are evenly represented (each class accounts for 1/8 of the data);

• Concatenated (Pooled-Cat): Train on the full concatenation of the inde-
pendent development sets, i.e. on 16K segments in total;

• Sharding: Perform a single randomized sharding of the Pooled-Cat data,
then train using the IterMixSelSGD algorithm, with the original split;

• Re-sharding: Same method as Sharding, but randomly re-sharding after
each training epoch;

• By IPC (IPC): Treat independent development sets as shards, also train
with IterMixSelSGD.

In addition to individual test sets, we also extract a pooled test set with the
same procedure as described for Pooled.

3.12.2.2 Evaluation

We őrst present Mert baselines using the Dense feature set in Table 3.25 on
Independent and both pooled conőgurations. While there are minor ŕuctuations
between the different conőgurations, i.e. tuning on Independent on sections C

123

3 Learning Preferences from Static Reference Translations

Independent1 Pooled2 Pooled-Cat3

Pooled Test ś 51.3 51.8

A 54.8 54.8 (1,2)55.3
B (2,3)52.5 51.3 (2)52.2
C (3)56.6 56.7 (2)56.1
D (2)50.8 49.9 (2)50.6
E (2)49.7 49.2 (1,2)49.9
F (2)51.6 51.1 (2)51.7
G (2)49.5 49.1 (1,2)50.0
H (2)49.8 49.5 (1,2)50.6
Average 51.9 51.4 52.1

Model Size 370K 450K 1.5M

Table 3.26: Dtrain tuning with all data sets using the baseline algorithm (Al-
gorithm 3) and Sparse features. Table adapted from [Simianer and
Riezler, 2013].

and F outperforms both pooled conőgurations by a small but signiőcant margin,
the averaged scores over all sections are almost identical. This also applies to the
pooled test data.

For Dtrain, we őrst evaluate the baseline algorithm using the Sparse feature
set on the same data conőgurations as before with Mert tuning. The results
are shown in Table 3.26. On average, comparing the Mert baselines with the
respective Dtrain systems, we őnd that Independent and Pooled-Cat perform
slightly better with Dtrain, whereas the Pooled setup is at about the same
level. The biggest differences are observed on data from section C56. Model sizes
are also depicted in Table 3.26. Both pooled conőgurations lead to signiőcantly
larger models than the average size shown for the experiments on Independent.
Since Pooled and Independent are approximately the same size in terms of
translation material, this result suggests that there are features that are only used
within particular sections, i.e. because of domain-speciőc vocabulary.

We further experimented with Dtrain with added ℓ1 regularization as described
in Section 3.10.1. Results are depicted in Table 3.27. Training on the small
joint Pooled data set leads to deőcient performance, compared to Independent

and Pooled-Cat data, as well as the Mert baseline and unregularized training

56As for example Wäschle and Riezler [2012a] show, section C (’Chemistry, Metallurgy’) of the
patent classification is significantly different from other classes, as it contains large amounts
of non-textual data such as chemical formulae.

124

3.12 Further Experiments

Independent1 Pooled2 Pooled-Cat3

Pooled Test ś 50.8 52.1

A (2)55.1 54.3 (1,2)55.9
B (2)52.6 50.8 (2)52.6
C 56.2 56.1 (1,2)56.8
D (2)50.7 49.5 (1,2)51.2
E (2)50.3 49.7 (2)50.0
F (2)51.7 50.7 (2)52.0
G (2)49.9 49.1 (1,2)50.5
H (2)50.5 49.2 (2)50.5
Average 52.1 51.1 52.4

Model Size 430K 460K 1.6M

Table 3.27: Dtrain tuning with all conőgurations using the baseline algorithm
(Algorithm 3), Sparse features and ℓ1 regularization as described in
Section 3.10.1. Table adapted from [Simianer and Riezler, 2013].

with Dtrain. With regularization, training on Pooled-Cat again works best
overall with a slight edge, suggesting that there are commonalities between the
different sections that can be exploited better with regularization. We also note
that the average result on Pooled-Cat is an improvement of 0.9 %BLEU over
the respective Mert experiment. Further, the size of the model grows about 3 fold
when training data is 8 times larger. Notably, the model sizes are larger compared
to unregularized systems. We suspect that by using regularization, we actually
observe more of the search space, which has the effect of obtaining a larger model.
However, this contradicts the intention of inducing sparsity with ℓ1 regularization.

Table 3.28 depicts the results for Dtrain training using the margin perceptron
loss function. Overall results are improved compared to the standard perceptron,
ℓ1 regularized perceptron as well as Mert, where observe an improvement of 1.3
%BLEU on Pooled-Cat on average. Model sizes are larger than with both the
standard- and the ℓ1 regularized perceptron: This is expected, since the margin
constraint leads to a larger number of updates, introducing more non-zero features
into the model.

Lastly, we apply the IterMixSelSGD algorithm using the standard- (Table
3.29) and the margin perceptron (Table 3.30) on the variations of the Pooled-Cat

data. Three different sharding methods are compared: Domain speciőc shards
(IPC), random sharding (Sharding) and random re-sharding (Re-sharding)
after each epoch. We also employ ℓ1/ℓ2 feature selection with a limit of 100,000

125

3 Learning Preferences from Static Reference Translations

Independent1 Pooled2 Pooled-Cat3

Pooled Test ś 51.3 52.6

A (2)56.1 55.3 (2)55.9
B (2)52.5 51.6 (2)52.4
C (2)57.2 56.9 (1,2)57.5
D (2)50.5 50.2 (1,2)51.4
E (2)50.3 49.4 (1,2)50.7
F (2)52.1 51.2 (1,2)52.6
G (2)50.0 49.6 (1,2)50.9
H (2)50.6 49.8 (1,2)51.3
Average 52.4 51.7 52.9

Model Size 420K 480K 1.7M

Table 3.28: Dtrain tuning with all conőgurations using the baseline algorithm
(Algorithm 3), Sparse features and the margin perceptron. Table
adapted from [Simianer and Riezler, 2013].

Independent1 Pooled-Cat2 IPC3 Sharding4 Re-sharding5

Pooled Test ś 51.8 52.6 52.5 52.6

A 54.8 (1)55.3 (1,2)56.4 (1,2)56.2 (1,2)56.2
B (2)52.5 52.2 (1,2)52.8 (1,2,3)53.0 (1,2)53.0
C (2)56.6 56.1 (1,2,4,5)57.8 (1,2)57.3 (1,2)57.4
D 50.8 50.6 (1,2,4,5)51.5 (1,2)51.3 (1,2)51.2
E 49.7 (1)49.9 (1,2)50.5 (1,2)50.5 (1,2)50.4
F 51.6 51.7 (1,2)52.3 (1,2)52.4 (1,2)52.3
G 49.5 (1)50.0 (1,2)50.8 (1,2)50.9 (1,2)50.7
H 49.8 (1)50.6 (1,2)51.2 (1,2)51.1 (1,2)51.1
Average 51.9 52.1 52.9 52.8 52.8

Model Size 370K 1.5M 100K 100K 100K

Table 3.29: Dtrain tuning with all conőgurations using the IterMixSelSGD

algorithm, Sparse features and the standard perceptron (with two
columns replicated from Table 3.26 for comparison). Table adapted
from [Simianer and Riezler, 2013].

126

3.12 Further Experiments

Independent1 Pooled-Cat2 IPC3 Sharding4 Re-sharding5

Pooled Test ś 52.6 53.0 53.0 53.0

A 56.1 55.9 (1,2,4,5)56.8 (1,2)56.6 (1,2)56.5
B 52.5 52.4 (1,2)53.3 (1,2)53.4 (1,2)53.2
C 57.2 (1)57.5 (1)57.5 57.4 57.4
D 50.5 (1)51.4 (1,2,4,5)52.1 (1,2,5)51.8 (1,2)51.7
E 50.3 (1)50.7 (1,2,4)51.1 (1,2)50.9 (1,2)51.0
F 52.1 (1)52.6 (1,2,4,5)53.1 (1,2)52.8 (1,2)52.9
G 50.0 (1)50.9 (1,2,4,5)51.4 (1,2)51.2 (1,2)51.1
H 50.6 (1)51.3 (1,2)51.6 (1,2)51.6 (1)51.5
Average 52.4 52.9 53.4 53.2 53.2

Model Size 420K 1.7M 100K 100K 100K

Table 3.30: Dtrain tuning with all conőgurations using the IterMixSelSGD

algorithm, Sparse features and the margin perceptron. Table adapted
from [Simianer and Riezler, 2013].

features for all setups. Comparing the results to the simple concatenation of section-
speciőc data (Pooled-Cat), as well as independent data, we observe signiőcant
improvements throughout, while learning a sparser model. Regarding the question
whether natural tasks (IPC sections) could provide an advantage over randomized
settings, the results indicate slightly better performance for a subset of the sections.
This effect is more pronounced with the margin perceptron. Also worth noting
is that results for the margin-perceptron outperform the results for the standard
perceptron in any setting on average, see Table 3.30.

From these experiments we can conclude that it is possible to exploit commonal-
ities within data sets by ℓ1/ℓ2 regularization for overall improved performance.

3.12.2.3 Japanese-to-English Patent Translation

We applied the Dtrain tuning algorithms to the Japanese-to-English language
pair in the patent domain. Training data consists of 3M parallel segments of patent
data distributed for the NTCIR workshop [Goto et al., 2013]. The translation
model and a 5-gram language model were built only from using parallel data. Since
the Japanese data is not segmented into tokens, we applied the segmenter of the
MeCab tool [Kudo, 2005] prior to training.

Three data sets, each containing 2K parallel patent segments, are used for tuning
and development. These data sets contain data from all IPC sections, with a

127

3 Learning Preferences from Static Reference Translations

IPC Dev. 1 Dev. 2 Dev. 3 Dev. Test

A 1.5 3.5 2.7 1.0
B 8.1 11.3 7.2 12.0
C 1.5 1.0 1.2 1.0
D 0.1 0.2 0.3 1.2
E 0.7 0.1 1.0 0.1
F 5.9 7.7 5.5 12.0
G 47.7 43.0 46.3 30.3
H 34.5 33.2 35.8 42.4

Table 3.31: Distribution of IPC classes in % in development data sets for a Japanese-
to-English patent translation task. Table adapted from [Simianer et al.,
2013b].

Tuning Set

System Dev. 1 Dev. 2 Dev. 3 Dev. 1+2+3

Mert 27.9 27.6 27.6 27.8
Dtrain, Dense 27.8 ś ś ś
Dtrain, Sparse 28.8 28.1 28.7 29.0

Dtrain, Sparse, IterMixSelSGD ś ś ś 28.9

Table 3.32: Tuning results for Japanese-to-English patent translation task. Results
in bold are signiőcant improvements over the Mert baseline with
p < 0.01. Table adapted from [Simianer et al., 2013b].

signiőcant bias towards sections G and H. The exact distribution of IPC sections
is depicted in Table 3.31. A fourth data set of 2K segments, which exhibits the
same bias, was used for testing during development.

In a őrst experiment we explore Dtrain with Dense and Sparse feature sets
on a variety of data conőgurations and compare it to a baseline established with
Mert. Each of the available data sets is used for optimization separately, and
in combination by concatenating all data sets. Mert was run several times to
account for optimizer instability, the reported scores in Table 3.32 are averages.
Mert results are basically invariant with regard to the development set, also when
combining all development sets.

For sanity checking, Dtrain was evaluated by training on the őrst development
set using Dense features, yielding a similar result as Mert with a score of 27.8 on

128

3.12 Further Experiments

the test set. Focusing on the Sparse feature set, we observe an improvement of
about 1 %BLEU, with the exception of development set 2, where the improvement
is less pronounced. This may be attributed to the different distribution of IPC
sections within this data set, about 10% less of section H compared to the test set.
Dtrain with Sparse features gains little compared to best single set results when
using the concatenated data.

In an additional experiment, we apply the IterMixSelSGD algorithm, treating
each development set as a single shard. After every one of 10 epochs, 100,000
features are selected. The result on the development test set is similar to using the
full concatenated data, but since all data sets could be used in parallel for training,
and the model size is reduced by feature selection, training is more efficient.

3.12.3 Spoken Language Translation

Automatic translation of spoken language57 is a challenging problem, since spoken
language is a distinct genre which is signiőcantly different to the genres of written
language and includes the error-prone step of transcription, as described in Section
2.4.1.5. Here we present experiments for two language pairs using transcribed data
distributed for the translation tasks for the International Workshop on Spoken
Language Translation (IWSLT) [IWSLT, 2004].

3.12.3.1 German-to-English

For German-to-English, we carried out two distinct experiments: 1) Exploring
training on the bitext, as well as training sparse syntactic features, and 2) performing
an ablation test for sparse features, adding lexical word-translation features as well.

In the őrst experiment, parallel data from the IWSLT 2013 is used [IWSLT,
2013]58, which amounts to about 140K segments of transcribed spoken language
data. The German side of the parallel data was processed using the compound
splitting algorithm suggested by Koehn and Knight [2003] to reduce the number of
unknown tokens in the data. The experiments are carried out using three different
language models, one 4-gram model built solely from the target-portion of the
parallel data, and two 5-gram models, the őrst one built from 190M segments of
the English Gigaword corpus [Parker et al., 2011], and another model combining
all previous data sets with data from the monolingual data distributed with the
WMT benchmarks, as described in Section 3.4.1, resulting in about 300M segments
total. The translation model is trained as already described for the other German-
to-English experiments.

57Here: Transcriptions of spoken language without automatic speech recognition (ASR) compo-
nent.

58See also [Cettolo et al., 2012].

129

3 Learning Preferences from Static Reference Translations

In addition to the Sparse feature set, with rule identiőer, rule bigram and
rule shape features, we experiment with soft syntactic constraints to incorporate
syntactic knowledge in the hierarchical phrase-based translation system. The idea
of incorporating knowledge about source-side syntactic constituency, as introduced
by Chiang [2005], is extended to a sparse feature approach by Marton and Resnik
[2008]: For each rule application in the őrst pass of the translation process, a
different feature is őred which indicates whether the currently used set of rules
adheres or crosses any constituent of a pre-generated parse of the source. This
allows to learn (soft) preferences which should identify useful source constituents.
For our experiments we employ the Stanford Parser for German [Rafferty and
Manning, 2008], which uses 20 non-terminal symbols, which results in a total of 40
additional features with this template.

Discriminative training on the bitext was performed on the full set of 140M par-
allel segments, employing sharding with about 2,200 segments per shard, resulting
in 64 total shards. As usual, 100,000 features are selected after each epoch, and
the őnal weights are merged by averaging. In addition to the standard sharding
process, we exploited structural data that is available for the training data: The
training data is made up of a number of transcribed talks, which exhibit keyword
information. We clustered the training data in such a way that evenly sized clusters
(similar in size to the random sharding) of related data emerged. This way we
could use about 70% of the original data, since some clusters had to be discarded
due to being insufficiently small. In an attempt to further prevent overőtting on
the training data, instead of the previously described leave-one-out technique for
grammar estimation, we employ a technique similar to the folding method described
by Flanigan et al. [2013], training shard-speciőc language and translation models.

The tuning and development sets we use are dev2010, and tst2010 respectively,
as distributed by the organizers of the translation task.

The results for the őrst experiment are depicted in Table 3.33: By using the
Sparse feature set one can outperform the Mert baseline, and using more data
for training the language models also clearly leads to improvements, although most
of the additional data is not from the spoken language domain. We furthermore
observe that training on the full bitext improves over just using a single tuning set
by about 0.4 to 0.8 %BLEU. The soft syntactic constraints (SoftSyntax) however
do not lead to any improvement over just using the Sparse features in isolation.
The clustering approach for sharding seems to provide some advantage over random
sharding, but the effect could also stem from a random artifact from using different
data.

In the second German-to-English experiment with spoken language data [IWSLT,
2015], we explore feature ablation for the Sparse feature set and also add word-
translation features (referred to as Lexical in the results Table) as for example
proposed by [Hieber and Riezler, 2015]. These features őre for one-to-one word
translations, insertions, as well as deletions. The alignments needed are read off

130

3.12 Further Experiments

System Dev. Test Test

Mert, Dense 26.7 ś
Dtrain, Sparse 27.6 ś
Dtrain, Sparse, Bitext 28.1 ś
Dtrain, Sparse, Bitext (Clustered) 28.0 ś
Dtrain, Sparse, SoftSyntax, Bitext 28.1 ś

Large LM

Mert, Dense 28.1 ś
Dtrain, Sparse 28.8 ś
Dtrain, Sparse, Bitext 29.2 ś
Dtrain, Sparse, Bitext (Clustered) 29.4 ś
Dtrain, Sparse, SoftSyntax, Bitext 28.9 23.4

Larger LM

Mert 28.4 ś
Dtrain, Sparse 28.8 ś
Dtrain, Sparse, Bitext 29.6 23.9
Dtrain, Sparse, Bitext (Clustered) 29.6 24.1

Table 3.33: Results for German-to-English spoken language translation for
IWSLT’13. Table adapted from [Simianer et al., 2013a].

131

3 Learning Preferences from Static Reference Translations

System Dev. Test # Features

Baseline (Dense) 23.1 ±0.1 27

+ Rule-Bigram +0.3 150K
+ Lexical +0.4 70K
+ Rule-Id −0.2 220K
+ Rule-Shape +0.2 78

+ Rule-Id, Lexical +0.0 230K
+ Rule-Bigram, Rule-Shape +0.2 200K

+ Rule-Id, Rule-Shape, Lexical +0.4 270K
+ Rule-Bigram, Rule-Id, Rule-Shape +0.6 270K
+ Rule-Bigram, Rule-Shape, Lexical +0.6 230K
+ Rule-Bigram, Rule-Id, Lexical +0.7 280K

+ Sparse, Lexical +0.7 260K

Table 3.34: Ablation test for sparse features on German-to-English spoken language
data (IWSLT’15). Table adapted from [Jehl et al., 2015].

from translation rules, which are annotated by Viterbi alignments. The features are
lexicalized, i.e. each pair of aligned words used within a translation are identiőed
by their lexical items when őring the corresponding feature.

The baseline system used is described in [Jehl et al., 2015]. For tuning we
use a concatenation of three small-scale, in-domain data sets59, with a total of
about 4K segments. The data was randomly split into four shards, utilizing ℓ1/ℓ2
regularization selecting 100, 000 features after each of 15 epochs for which the
algorithm is run. The őnal model used for testing is again generated by averaging
the őnal weights for each epoch. We observe a standard deviation of 0.1 on the
baseline, randomly sharding three times.

The development test results reported in Table 3.34 refer to the tst2013 data
set. All sparse features, with the exception of rule identiőers, lead to gains in
translation quality in terms BLEU compared to the baseline. The lexical translation
features have the strongest positive effect. Combining two sparse feature templates
apparently does not have an additive effect. The combination of three features
however, e.g. rule bigrams, rule identiőers, and shape features, lead to improved
results. The best improvement is őnally achieved either by combining all features,
or by combining rule bigrams, lexical translation features, and rule identiőers.

59Namely dev2010, tst2011, and tst2012.

132

3.12 Further Experiments

System Dev. Test Test1 Test2 Test3

Mert, Dense 17.5 Ð Ð Ð
Dtrain, Sparse 17.8 Ð Ð Ð
Dtrain, Sparse, Bitext 18.4 21.2 19.4 21.5

Large TM

Dtrain, Sparse 20.1 Ð Ð Ð
Dtrain, Sparse, Bitext 20.7 24.5 21.5 25.0

Table 3.35: Russian-to-English spoken language translation experiments. Table
adapted from [Simianer et al., 2013a].

3.12.3.2 Russian-to-English

The Russian-to-English experiment is also carried out within the IWSLT’13 [IWSLT,
2013] evaluation campaign and follows the same general structure as the previous
German-to-English experiments.

For training there are 130K in-domain parallel segments available. For this
language pair we also try to extend the parallel data, incorporating Russian-
English parallel data distributed with the WMT evaluation, resulting in a total of
about 2.6M parallel segments. Note that apart from the 130K in-domain parallel
data, all other data is most likely non-speech data. For Russian-to-English we
re-use the large English 5-gram language model as used for the previous German-to-
English experiments. For training on the bitext we sub-sample the parallel data to
obtain about 1/3 of the data. We furthermore employ the same folding technique
as for German-to-English.

The results for this set of experiments are depicted in Table 3.35. Again, Dtrain

with Sparse features can outperform a Mert baseline, and training on the bitext
results in a further, more pronounced improvement. Using more parallel data for
training the translation model clearly improves the experiment with the bitext by
2.3 %BLEU, which indicates that training with the Sparse features (which are all
derived from translation rules) can beneőt largely from an improved translation
model, even when adding data that is not directly related to the actual domain of
interest.

3.12.3.3 English-to-Russian

For the English-to-Russian experiment we use the same data and setup as for the
Russian-to-English experiment, but can only use a 5-gram language model built

133

3 Learning Preferences from Static Reference Translations

System Dev. Test Test1 Test2 Test3

Mert, Dense 13.1 Ð Ð Ð
Dtrain, Sparse 13.9 Ð Ð Ð
Dtrain, Sparse, Bitext 13.2 14.2 12.9 14.6

Large TM

Mert, Dense 13.5 Ð Ð Ð
Dtrain, Sparse 14.8 15.5 13.8 16.0

Table 3.36: English-to-Russian spoken language translation experiments for
IWSLT’13. Table adapted from [Simianer et al., 2013a].

from 22M Russian segments60, which are mostly out-of-domain.
Translation results are depicted in Table 3.36. Pairwise ranking with the Sparse

feature set again improves considerably over the Mert baseline. Tuning on the
bitext however just barely improves over the baseline. This is unexpected since we
used the same parallel data as for Russian-to-English for which the results were
positive using the bitext as tuning data. We suspect that the trained translation
model was deőcient. Using more parallel data for the translation model again
improves performance.

3.13 Experimental Summary

Due to the large amount of experiments we carried out, we provide a brief recapit-
ulation the main empirical őndings below, and give an overview of the experiments
for the data sets used for development of our algorithms.

Experiments on Small-Scale Data

The summary for the experiments on the small-scale Nc∗ data is depicted in
Table 3.37. The results show clearly the deőciency when not using the margin
perceptron loss. With the margin, Mert and Dtrain are almost on par, with a
slight advantage for the pairwise ranking approach. Training on the bitext does
not work well for this data set compared to tuning on the development set, which
suggests that the development set is close to the test set. We also note that the
structured prediction approach works well on this data sets.

60For a detailed listing of data see [Simianer et al., 2013a].

134

3.13 Experimental Summary

Nc∗

System Dev. Test

Dtrain, Dense, Regular 25.2 1.0
Dtrain, Sparse, Regular 25.5 1.0
Mert, Dense 25.8 ±0.0 1.0 ±0.0
Mira, Dense 26.0 1.0
Dtrain, Sparse, Margin, Bitext 26.2 1.0
Dtrain, Dense, Margin, Struct. 26.2 1.0
Dtrain, Dense, Margin 26.3 1.0
Dtrain, Sparse, Regular, Bitext 26.3 1.0
Dtrain, Sparse, Margin, Struct. 26.7 1.0
Dtrain, Sparse, Margin 26.7 1.0

Table 3.37: Experimental summary for the German-to-English Nc∗ data set.

Experiments on Medium-Scale Data

The compiled list of experiments for the Ep∗ data is depicted in Table 3.38.
For this data the structured prediction approach does not hold up to the other

methods. Using Mert for training only the dense features is a competitive baseline
for this data set. Again the margin perceptron clearly improves over the previous
approach, but also diminishes the gains observed by using the sparse features.

Experiments on Large-Scale Data

The compiled results for our largest data set are shown in Table 3.39. The main
outcome of this set of experiments is that, given the same training data and feature
sets, all tested algorithms perform similarly, within a range of 0.2 %BLEU. The
margin perceptron and the sparse features are clearly an improvement on this data
set when combined with large in-domain data. Tuning on the very large bitext
does not improve over tuning on a single small development set. We also see that
asynchronous and synchronous parallelization schemes perform similarly.

Lastly, the results for the Russian-to-English data set (Wmt15) are listed in
Table 3.40, the results conőrming the previous őndings.

Gold-Standard

In Section 3.8 we established that the choice of the evaluation metric used to
establish a gold-standard ranking is not of greater importance in our approach, as

135

3 Learning Preferences from Static Reference Translations

Ep∗

System Dev. Test BP Test1 BP Test2 BP

Dtrain, Dense, Margin, Struct. 27.1 1.0 27.0 1.0 27.3 1.0
Dtrain, Sparse, Margin, Struct. 27.5 1.0 27.7 1.0 28.1 1.0
Dtrain, Dense, Regular 27.8 1.0 27.9 1.0 28.1 1.0
Dtrain, Sparse, Regular 29.4 1.0 29.1 1.0 29.5 1.0
Mert, Dense 29.9 ±0.1 1.0 ±0.0 29.7±0.2 1.0 ±0.0 30.0±0.1 1.0 ±0.0
Dtrain, Sparse, Margin 30.1 1.0 30.0 1.0 30.5 1.0
Dtrain, Dense, Margin 30.2 1.0 29.9 1.0 30.3 1.0

Table 3.38: Experimental summary for the German-to-English Ep∗ data set.

Wmt13

System Dev. Test1 Test1 Dev. Test2 Test2

TuningS , Dtrain, Dense, Regular 18.3 16.7 19.1 19.2
TuningS , Dtrain, Sparse, Regular 19.6 18.1 20.3 20.6
TuningS , Mert, Dense 23.4 ±0.4 21.8 ±0.2 25.0 ±0.3 24.3 ±0.3
TuningS , Mira, Dense 23.4 22.3 25.0 24.1
Bitext, Dtrain, Sparse, Regular 23.4 22.0 24.8 23.9
Bitext, Dtrain, Sparse, Margin 23.4 22.4 25.1 24.3
TuningS , Mira, Sparse 23.5 22.2 24.6 24.0
TuningS , Dtrain, Dense, Margin 23.5 22.2 24.8 24.1
TuningS , Dtrain, Sparse, Margin 23.6 22.3 25.1 24.3
TuningL, Dtrain, Sparse, Regular, IterMixSelSGD, Re-shard 24.6 22.9 25.9 25.0
TuningL, Dtrain, Sparse, Margin, IterMixSelSGD, Once 24.9 ±0.1 23.1 ±0.2 26.1 ±0.1 25.4 ±0.1
TuningL, Dtrain, Sparse, Margin, IterMixSelSGD, Re-shard 24.9 ±0.0 23.0 ±0.1 26.1 ±0.1 25.5 ±0.1
TuningL, Dtrain, Sparse, Margin, AsyncSGD 25.0 ±0.1 23.1 ±0.1 26.2 ±0.2 25.6 ±0.1

Table 3.39: Experimental summary for the German-to-English Wmt13 data set.

136

3.13 Experimental Summary

Wmt15

System Dev. Test Test

Dtrain, Dense, Regular 17.0 20.5
Dtrain, Sparse, Regular 19.1 22.3
Dtrain, Dense, Regular,Bitext 20.7 25.0
Mert, Dense 21.8 26.5
Dtrain, Sparse, Regular, Bitext 21.9 26.1
Dtrain, Dense, Margin 21.9 27.1
Dtrain, Sparse, Margin 22.7 27.5

Table 3.40: Experimental summary for the Russian-to-English Wmt15 data set.

long as some provisions are done to prevent non-informative zero scores. Also the
brevity penalty was not an issue in the experiment we presented.

Pair Selection

We have found an effective method to reduce the number of pairs used for train-
ing in our pairwise ranking approach: As described in Section 3.9, multipartite
ranking based on the gold-standard score is an adequate method to reduce the
overall training data, while ensuring that important examples are observed by the
algorithm.

We also found that selecting a single pair of hope and fear translations can be
an efficient alternative in our framework when using small data sets.

Parallelization

For our work on training on the full bitext for a number of data sets, including one
that has about 4.5M segments, we developed parallelization schemes which enable
tuning on such large-scale data in the őrst place.

In Section 3.10 we also found that it is not important in terms of resulting
translation quality whether synchronous or asynchronous algorithms are used for
optimization. We also did found that there is no signiőcant variance caused by
optimizer instability for re-sharding or asynchronous parallelization.

Feature Selection and Multi-Task Learning

We introduced ℓ1/ℓ2 regularization for SMT tuning, and highlighted its utility for
two applications: 1) feature selection, and 2) multi-task learning.

137

3 Learning Preferences from Static Reference Translations

Throughout our experiments we have shown its effectiveness as a method for
feature selection. We have further established the multi-task aspect on patent
translation as described in Section 3.12.2, where we successfully improved over
in-domain tuning sets as well as concatenated data, by exploiting similarities within
the different data sets through ℓ1/ℓ2 regularization.

Training on the Bitext

While training on larger amounts of in-domain data is advantageous in the majority
of cases, training on the same bitext which was used for training the underlying
generative models gives mixed results. This is however in accordance with related
work. We also show that, when doing feature selection via ℓ1/ℓ2 regularization,
the resulting model can be useful for translating out-of-domain data, as shown in
Section sec:dtrain-bitext. This supports our intuition that the proposed feature
selection technique reduces the model’s components to the most important ones,
which are also likely to be observed on other data than the original training set.

Margin Perceptron

In the experiments in Section 3.10.3, we established that including a large margin
objective into the loss function underlying the pairwise ranking approach is clearly
superior to the regular approach.

Features

Throughout this work we have shown that using sparse feature in addition to
the regular dense feature set is more often than not advantageous in terms of
őnal translation quality. Most noteworthy are the rule identiőer features which
effectively include a discriminative translation model in the MT system’s log-linear
model.

Comparison to Other Tuning Methods

Compared to other tuning methods, i.e. MERT or MIRA, we have established that
all perform quite similarly. However, MERT is an exception, since it cannot be
used to train sparse features. It is however a competitive baseline.

We therefore conclude, since all methods use vastly different algorithms, that
training the parameters of the linear model of traditional SMT is inherently limited.

138

4 Learning Preferences from Post-Edits

„Das ist eine von den alten Sünden, Sie meinen Rechnen, das sei Erfinden.“
[Johann Wolfgang von Goethe]

Since the earliest beginnings of MT, it has been obvious to many researchers and
practitioners in this őeld of research, that automatic translation is an outstandingly
hard problem [Tsujii, 1986] and may always need some form of human participation
for sufficient quality [Bar-Hillel, 1960]. This entails that end-to-end1 MT is possibly
infeasible for many use cases, it however could still be used as a tool or an aid
for human translators. This view becomes evident reviewing survey literature on
machine translation of different decades.

As early as the 1950s, not long after the idea of machine translation was appre-
hended by a larger audience [Weaver, 1949], Yoshua Bar-Hillel noted:

“[. . .] high-accuracy, fully automatic MT is not achievable in
the foreseeable future [. . .]ž

[Bar-Hillel, 1951].

In 1966, the Automatic Language Processing Advisory Committee (ALPAC),
asserted that the then current state of MT was amiss. One of their key őndings is
that general purpose automatic translation was still out of the question:

“[. . .] while we have machine-aided translation of general scientific text, we do
not have useful machine translation. Further, there is no immediate or predictable
prospect of useful machine translation.ž

[Pierce and Carroll, 1966]

Instead, the report strongly argued in favor of the view of MT as an aid for
human translators.

After almost four decades of research, which explored a manifold of approaches
to MT, in 1992 John Hutchins states in an introductory book on MT:

“We can have either fully automatic translation or high-quality (computer-based)
translation, but we cannot have both.ž

[Hutchins and Somers, 1992]

1Translations meant for direct human consumption without human intervention.

139

4 Learning Preferences from Post-Edits

And Martin Kay further states in 1997 in the őttingly titled article “The Proper
Place of Men and Machines in Language Translation”:

łThe proper thing to do is therefore to adopt the kinds of solution that have proved
successful in other domains, namely to develop cooperative man–machine systems.ž

[Kay, 1997]

And, most recently, in 2016, Maarit Koponen establishes in an overview article
on human-machine interaction in translation:

“Despite improved MT quality in many language pairs, machine-translated texts are
generally still far from publishable quality, [. . .]ž

[Koponen, 2016].

About 70 years after Bar-Hillel’s initial őndings, automatic translation systems
are still not [yet] able to produce perfect, or, depending on the nature of the
domain, even comprehensible translations without human intervention, despite the
tremendous efforts invested in research and development during that time.

Nonetheless, as for example shown by Guerberof [2009], the current quality of
MT can be perfectly sufficient to be used as an aid for human translators, e.g.
by using the MT outputs as a starting point for manual translation in order to
to save time, instead of translating from scratch. This mode of machine assisted
human translation, referred to as post-editing (PE), has had signiőcant impact on
the practical application of MT due to its apparent positive effect on cost-efficiency
compared to human translation from scratch.

In this chapter, we propose a method for improving the PE experience by
providing an efficient method for learning user- or domain-speciőc models that
improve the translation outputs that are used as starting points for PE.

Below we will őrst provide an extended introduction to CAT, and then discuss
the general notion of adaptive MT for human machine translation. We then review
related works, and őnally present our own approach to an adaptive translation
system based on an external k-best reranking approach. Our methods are evaluated
in a set of PE experiments with simulated user inputs.

4.1 Computer-Aided Translation

Today (2017), MT outputs can despite large amounts of research, mostly only be
used for non-critical tasks such as gisting2, as we have already elaborated. For
other uses of the unaltered outputs, the quality of MT is simply not sufficient for

2Gisting means achieving an approximate understanding of a text.

140

4.1 Computer-Aided Translation

direct consumption3. One could argue, that for FAHQMT a much more complex
problem has to be solved than just string transduction: If a machine is able to
adequately and ŕuently transform one natural language into another one, it must
have means to comprehend the actual underlying meaning, which in turn implies
true artiőcial intelligence (AI).

Since true AI is a far fetched goal, MT may not be solved in the near future.
However, as described in 2.1, MT and machine-aided human translation (MAHT)
have gone hand in hand throughout the history of MT research and practice.

While human assisted machine translation (HAMT) has an appeal in rule-based
MT, where for examples interfaces between man and machine can take away the
burden of resolving ambiguity from the machine, current statistical systems have
means to handle this autonomously. In contrast MAHT, or the more modern
interpretation as CAT4 has gained more interest in research and in the translation
industry with the statistical systems.

In modern CAT, two distinct directions can be identiőed:

• Traditional PE Ð correcting automatic translation outputs for improved
efficiency;

• Interactive machine translation (IAMT) Ð providing interactive tools which
interface the user and the MT system for generating translations mutually.

While PE has been standardized, and is overall a well studied process, IAMT
largely depends on the underlying MT system and is more complicated to imple-
ment5.

In this section we focus on PE, since IAMT requires special user interfaces of
some sort, has strict latency requirements due to preőx decoding, and is generally
harder to implement, as well as to simulate for evaluation. PE on the other hand
is straight-forward to implement and can be readily simulated.

Another type of software for CAT are translation memories (TM), which are
specialized databases for storing previously generated translations. Prior to the
translation of a source segment this database can be queried using the source
as input, and all stored target-language translations (if any) are returned. Such
systems can handle exact matches as well as fuzzy6 matches, which allow for some
variability in the query for generating more varied matches. Translation memories

3Most recently, Wu et al. [2016] present a human evaluation showing that there is still a significant
gap between human and automatic translation, even for extremely simple inputs.

4Analogous to computer-aided design in engineering.
5Most approaches in IAMT use the phrase-based approach to MT, since hierarchical phrase-based

approaches are less well suited as their parsing-based decoding process can only be used with
difficulties for prefix decoding.

6Allowing for a certain degree of disagreement between the match and the source.

141

4 Learning Preferences from Post-Edits

can help to enforce consistency by storing previously generated translations in
context. Related to this use case are termbases, which are essentially context-speciőc
dictionaries.

4.2 Post-Editing

Post-editing7 of MT output [Somers, 2003; Balling and Carl, 2014] is an idea as
old as MT itself, going back until the initial steps in MT [Koponen, 2016], and it
still is a necessary step if machine translations are to be used for more than just
gisting. It has been shown in a number of studies that PE has an positive effect on
the productivity of translators.

Early studies on the effects of post-editing on translators found at best mixed
results in terms of efficiency and quality comparing PE to translation from scratch
Ð [Orr and Small, 1967] report signiőcantly lower quality of post-edited machine
translations, [Pierce and Carroll, 1966] conclude post-editing takes longer and is
thus more expensive, and more recently Krings [2001, 1997] also could not őnd
generally applicable gains in efficiency through PE. These results can however
possibly attributed to insufficient baseline translation quality, at least to some
extent, since it is directly linked to effectiveness8 of PE [Koehn and Germann, 2014;
De Sousa et al., 2011]. Krings [2001, 1997] also employ an arguably non-realistic
evaluation method Ð think-aloud protocols [Jääskeläinen, 2010; Bernardini, 2001]
Ð which, while giving insights to cognitive processes, do not represent a realistic
scenario. For low-resource languages, PE has been shown to increase productivity,
which however comes with a loss in overall translation quality [Skadin

,
š et al., 2011].

Garcia [2011, 2010] show the inverse for the Chinese-English language pair, with no
or only marginal improvements in productivity, but a loss in the resulting quality
of the translations.

More recent studies, mostly employing SMT, have reported encouraging results
for PE compared to translation from scratch: Guerberof [2009], Arenas [2008],
Flournoy and Duran [2009], Federico et al. [2012] Zhechev [2012], Plitt and Masselot
[2010], Koglin [2015] and De Sousa et al. [2011] report large gains in efficiency
for constrained well-known domains. Casanellas and Marg [2014] report on a
study with positive results for PE, with some constraints with regard to the general
applicability of the results. An early result by Baker et al. [1994] also shows possible
gains by PE when used with a controlled language in a corporate environment.
Koehn [2009] and Koehn and Haddow [2009] show that in general, translators
can improve using aids in CAT, as well as that PE showed best results in terms
of efficiency and also resulting quality (in terms of coarse human judgments) of
translations. Plitt and Masselot [2010] also report improved quality when they use

7So to say the inverse view of pre-translation.
8Tatsumi [2009] find however, that MT metrics are not good predictors for post-editing speed.

142

4.2 Post-Editing

PE. Aziz et al. [2012] and De Sousa et al. [2011] provide further evidence for the
effectiveness of PE, but do report no effects on quality, whereas Läubli et al. [2013]
report gains in quality and translation speed. Prominently, Beaton and Contreras
[2010] report an average total cost reduction of 30% by utilizing post-editing. Green
et al. [2013a] provide a statistical analysis showing improvements in both quality
and speed when translators post-edit. Gaspari et al. [2014] also report that faster
translation speeds are possible by PE, but also point out discrepancies in the
perceived productivity and overall mixed results when comparing PE and fully
human translation.

Concerning the comparison between more advanced interactive approaches to
CAT, [Sturgeon and Lee, 2015] cannot provide a conclusive result, since it appears
to depend on the individual translator. Conversely, Green et al. [2014b] report
superior speed of PE compared to an interactive approach, but in contrast overall
lower quality assessments for translations produced with PE.

Due to these positive results, interest in PE is strong in both research and the
translation industry Tatsumi [2010]; Koponen [2016].

The use of MT in the translation industry, especially in the form of PE, is
not without controversy: Due to the specious, impressive gains in translation
productivity reported in some user studies, translators may be confronted by
exaggerated expectations of their throughput, and in turn have to accept dramatic
pay cuts. In addition, it is unclear whether these őndings can even be generalized to
other types of translation jobs, i.e. on different domains with possibly worse baseline
translation quality which affects productivity. But translators may nevertheless be
forced to accept signiőcant cuts in pay per word regardless, which is one reason
why a negative perception of PE prevails e.g. discussed by Guerberof [2013]: The
authors report that some translators just do not like the task of PE as such, it
being seen as an inherently different task to translation from scratch Ð in addition
to implications on their pay. O’Brien and Moorkens [2014] conclude the same.
However, e.g. Lagoudaki [2009] observe that the translation environments are
diverse and experiences are thus very subjective and general conclusions again
may be difficult9. Moorkens and O’Brien [2015] report on a study in which expert
translators (in contrast to novices) showed a negative attitude towards PE. Kim
and Kankanhalli [2009] present a meta study regarding general attitude towards
change in this context.

Nevertheless, CAT and especially PE have increased rates in their adoption
in the translation industry, and the process of PE is also an acknowledged and

9These difficulties also apply to translation memories and their different modes of application
[Wallis, 2006].

143

4 Learning Preferences from Post-Edits

officially deőned standard10 in addition to regular11 translation.

For our work, we conclude that it is imperative to improve baseline translation
performance, since it does directly impact the PE productivity [Koehn and Germann,
2014; De Sousa et al., 2011; Sanchez-Torron and Koehn, 2016; Lacruz et al., 2014],
and may also be able to enhance translators’ perception of the task of PE if they
experience it as an interactive experience [Wallis, 2006], where the MT system
evidently reacts to user input by continuous learning and adaptation.

4.3 Learning from Post-Edits

Most current MT systems translate, apart from offline domain adaptation efforts,
segments in isolation, which means that any context apart from local context given
within the segment is not taken into account in translation. This clashes with some
basic notions in NLP: “One sense per discourse” [Gale et al., 1992] is a well known
phenomenon, which is also reŕected in concrete frequencies of word occurrences
[Hearst, 1997] Ð without context, a MT system will not not be able adapt to the
diction of a given discourse. If there is a mismatch between the system’s training
data and the translation material at hand, this leads to repeated errors. Since SMT
systems tend to be consistent [Carpuat and Simard, 2012], this can pose signiőcant
problems in a CAT setup, as errors have to be corrected repeatedly. This can
also cause irritations and frustrations with the general PE setup for translators
[Macklovitch, 2006; Foster, 1998].

There are methods that implement very őne-grained domain adaptation methods,
e.g. by building models on the ŕy for single segments [Biçici and Yuret, 2011],
but in the PE setup a more valuable resource is available Ð the translations
corrected and conőrmed by the translator. The translation of related documents
by a single translator12 is a good example where very őne-grained information
could be exploited: Translation of a pair related patent documents may beneőt
greatly from sentence-wise adaptation, as exempliőed in Figure 4.1. Given that a
particular translation for glow plug was deemed to be correct when őrst translating
any of the segments, it would be preferable if the same translation was used in
any of the following segments in the text (same patent or related patents). If
the translation system however is not able, for any reason13, to use the correct

10ISO 18587:2017: Translation services — Post-editing of machine translation output — Require-
ments

11ISO 17100:2015: Translation services — Requirements for translation services
12Or alternatively a group of translators adhering the same guidelines or terminology restrictions,

e.g. working for the same company or project.
13These include but are not limited to: bad language model scores; translation option not available

in the translation model, i.e. not observed in the training data; or the log-linear weights do
not allow to use preferred translation rule.

144

4.4 Online Adaptation

Patent WO-2007000372-A1

A sheathed element glow plug (1) is to be placed inside a chamber (3) of an internal combus-
tion engine.

The sheathed element glow plug (1) comprises a heating body (2) that has a glow tube (6)
connected to a housing (4) [. . .]

[. . .]

Patent WO-2007031371-A1

A sheathed element glow plug (1) serves for arrangement in a internal combustion engine.

The sheathed element glow plug comprises a heating body [. . .]

[. . .]

Figure 4.1: Excerpts from abstracts of two distinct, but related patent documents
about glow plugs for diesel engines.

translation in context, it will inevitably reduce the productivity of the translator
(in terms of words per hour) as the translation has to be entered over and over
again, possibly on every occurrence. This can also be perceived as an annoyance by
the user. These faults could be mitigated if the system was able to learn from the
post-edits in real-time. For efficiency and to avoid frustrations it is thus important
that the MT systems used in this application are able to adapt and to learn from
previous errors that were corrected.

In the following section we will őrst present a deőnition of automatic online
adaptation, then describe our evaluation framework for our experiments, and
present the related work on online adaptation for CAT. Finally we present our work
on discriminative reranking for online adaptation, which was partially published in
[Wäschle et al., 2013] and signiőcantly extended in [Bertoldi et al., 2014].

4.4 Online Adaptation

All previously deőned classiőcation and ranking algorithms were already described
as instances of online learning [Cesa-Bianchi and Lugosi, 2006], learning from
one instance at a time after receiving the true label, e.g. taking a single step in
SGD. The PE scenario considered in the following also őts very well in this setup:
Translators typically translate single documents at a stretch, while translating
single segments of each document at a time. This results in a stream of new
bilingual sentence pairs which can be exploited for adapting the separate models

145

4 Learning Preferences from Post-Edits

of the MT system. Note that, as exempliőed in the previous section, these new
examples can be of major importance for the quality of the translation of the other
segments.

4.4.1 Online Learning Protocol

Cesa-Bianchi et al. [2008] deőned an online learning protocol for adaptation in an
online learning scenario, which we recreated in Algorithm 14.

Algorithm 14 Online learning protocol with online adaptation according to
Cesa-Bianchi et al. [2008]. Algorithm adapted from [Wäschle et al., 2013].

Train global model Mg

for all documents d ∈ D of |d| segments do

Reset local model Md ← ∅
for all segments t = 1, . . . , |d| do

1) Combine Mg and Md into Mg∪d

2) Receive input segment xt

3) Output translation ŷ using Mg∪d

4) Receive corrected translation y∗t
5) Reőne Md on triple (xt, ŷt, y

∗
t)

end for

end for

The process starts by learning a global model Mg, which in our case refers to
the linear model, and the translation- and language models learned from the static
training data. In the presented scheme, we hypothesize a single user working on
a single document d at a time, translating each segment t after the next for each
document. For producing the output ŷt, as used by the post-editor as starting
point, given the source segment xt, the global model Mg is combined with a local
model Md, which is initially empty. After post-editing, the local model receives a
single true label y∗t (the őnalized post-edit). The triple (xt, ŷt, y

∗
t) can be used for

updating Md. Note, that we included the original translation in the inputs for the
update. This original translation can for example be used to learn what exactly
the translator changed in the output.

4.4.2 Related Works

[Online] Adaptation for CAT is a well explored topic, with a wide variety of
approaches: Adaptation of the underlying generative models was introduced by
Nepveu et al. [2004] for language and translation models, implementing age-based
caches for both generative models. Levenberg and Osborne [2009] and Levenberg
et al. [2010] exploit approximate bloom őlters for language modeling, and online

146

4.4 Online Adaptation

updating of the word-alignment model with an incremental EM algorithm [Liang
and Klein, 2009], as well as efficient algorithms for suffix-array based translation
models [Lopez, 2007], for providing adaptation capabilities for an MT system. They
achieve better results with online learning than with traditional batch retraining. A
similar approach for PBMT is presented by Mirkin and Cancedda [2013]. Bertoldi
et al. [2013] also suggest a cache-based approach for language modeling. Further
work on incremental learning of word-alignment models is presented by Gao et al.
[2011]. Ortiz-Martínez et al. [2010, 2011] recommend adaptation by re-estimation of
the full feature set derived for the generative models in an PBMT system, including
a distortion model.

A notably different approach to online adaptation is taken by Blain et al. [2012],
using the word-alignments of source and the machine translation output as a
means for learning edits done by the post-editor. Hardt and Elming [2010] use
word-alignments between source and the post-edit or a reference translation in
order to build a local phrase-table for adaptation.

Conceptually similar to our work is the bold structured perceptron-based ranking
approach of Liang et al. [2006a], which uses łtruež feature representations of the
reference translations. In contrast to our work, they however discard all non-
reachable examples, or use a local updating14 strategy for them. Another tuning
is described by Denkowski et al. [2014a] and more detailed in [Denkowski, 2015],
where a Mira-based algorithm is used for online learning weights in a PE setup,
but without sparse features, and only adapting the weights of the generative models.
Wuebker et al. [2015a] use sparse features for learning a pairwise ranking model by
tuning [Green et al., 2013b] in an IAMT setup. A gradient-free variant for online
learning in CAT is presented by Mathur and Cettolo [2014]. In a similar setup,
Mathur et al. [2014] explore the multi-task perceptron [Cavallanti et al., 2010] for
multi-user adaptation. Mathur et al. [2013] employ a variant of Mira tuning for
online adaptation, which is also tested with sparse features [Mathur and Cettolo,
2014]. In general, all tuning methods that involve online learning algorithms such
as stochastic gradient descent can be used for online adaptation, if they also allow
to use online re-decoding.

An application of a reranker for adaptation is the approach presented by [Cesa-
Bianchi et al., 2008], where k-best reranking is employed for online adaptation
in a PE environment. They make use of a perceptron-based reranker, learning
from oracle BLEU translations as stand in for feature representations of reference
translations. They also utilize a sparse feature set similar to the one we will
describe by using target words and phrases, as well as full phrase-pairs as features.
Martínez-Gómez et al. [2011] also use perceptron-based k-best reranking for online
adaptation to post-edits, but use BLEU oracles for learning, and use the original
dense feature set of the MT decoder. López-Salcedo et al. [2012] present a ridge

14Using an oracle translation as stand-in for the true reference translation.

147

4 Learning Preferences from Post-Edits

regression approach in the same setting. Martínez-Gómez et al. [2012] provide
empirical evidence that local updating following Liang et al. [2006a] is effective.

Online adaptation is also inherently related to the task of domain adaptation
[Cuong and Sima’an, 2018; Carpuat et al., 2012], but as we have argued, a much
more direct approach is possible in CAT.

Automatic PE, using another MT system [Simard et al., 2007] for correcting the
initial outputs of a baseline system, has also been explored in an online adaptive
setting by Simard and Foster [2013].

From a theoretical perspective, works on meta-learning that are concerned with
incremental learning are related to online adaptation, see e.g. [Giraud-Carrier,
2000] for a discussion of the peculiarities of incremental learning.

Neural statistical MT, due to its inherently simpler approach to learning, can be
straight-forwardly adapted to make use of online learning methods [Peris et al.,
2017a; Turchi et al., 2017].

4.4.3 Simulated Post-Editing

Human evaluation in CAT is inherently difficult due to the many factors involved:

• Human translators have a variety of backgrounds which calls for conducting
studies with more than a single translator;

• Evaluation with human translators is costly since employing professional
translators has to be paid for;

• Repeated evaluation on the same data is impossible due to exposure bias;

• More general, it is difficult, if not impossible to repeat an experiment with
the same variables (data as well as translators), using different MT systems
on all levels;

• Translators may translate segments in arbitrary order, which leads to differing
training sets for the learning algorithms;

• Humans have a learning curve which has to be taken into account;

• A usable interface has to be designed to provide a realistic scenario, which
may include additional tools such as translation memories or termbases.

Hardt and Elming [2010] avoid these issues by proposing a simulated post-editing
scenario exploiting a given set of reference translations: Following the online
learning protocol deőned in Algorithm 14, the evaluation is carried out using the
set of 1-best outputs ŷ of the (adapted) MT system and calculating corpus level
metrics such as BLEU or TER on the őnal corpus using the original reference
translations.

148

4.5 Online Adaptation by Reranking

4.5 Online Adaptation by Reranking

In the following we describe our approach to online adaptation by learning to
rerank in a simulated PE scenario, using a feature representation of the post-
edits as learning signal. First k-best reranking is deőned and related works are
presented, then our approach is described and őnally we present a constrained
search method used to get a representation of the post-edits instead of relying on
pairwise preferences deőned by gold-standard scores.

4.5.1 Reranking

Reranking, as őrst described by Och et al. [2003a] for SMT, is the task of learning
a ranking function from a set of outputs of a SMT system, commonly a set of
őxed k-best translations. The reranking approach opens up the possibility to learn
powerful discriminative models using external inputs or globally deőned features,
which could not be used in the ranking approach, where features can only be used
if they can be incorporated into the search. Using a őxed feature set, which is
independent of the underlying SMT system, it is possible to learn portable models
that generalize over the underlying MT system, i.e. by deőning a joint feature
representation over input and output strings, disregarding the derivation provided
by the MT system. The features of the baseline MT system can however also be
used for reranking, e.g. for training another discriminative model on top of an
already trained system which produced the k-best lists.
K-best reranking is a well studied method in machine translation. Shen et al.

[2004] and Och et al. [2003a] describe algorithms inspired by the perceptron that
use pairwise preferences based on the BLEU score for ordinal regression. In further
work splitting algorithms and uneven margins are applied to reranking [Shen and
Joshi, 2005, 2004]. Carter and Monz [2010] apply the structured perceptron of
Collins and Duffy [2002] to SMT by using per-sentence BLEU as a ranking measure
for learning a rich syntactical reranking model. Mizumoto and Matsumoto [2016]
also apply the structured perceptron using BLEU to select oracle translations to
avoid grammatical errors produced by the underlying SMT system. Watanabe et al.
[2006] present a variant of the structured perceptron using a combination BLEU
and TER for learning from full pairwise samples of the k-best lists produced by a
SMT system, training a new reranking model with the same features as used in the
underlying baseline model on a domain speciőc development set. Since the original
Mert algorithm also makes use of k-best lists, it can be used for learning in a
reranking step: Och et al. [2004] present a wide variety of features for reranking
using Mert, and Hasan et al. [2007] explore using high values for k when using
Mert for reranking. Listwise approaches have also been applied to reranking in
SMT [Zhang et al., 2016].

Since reranking is a very ŕexible method, it can also be used to learn a discrimi-

149

4 Learning Preferences from Post-Edits

native ranking model from the outputs of a rule-based MT system [Velldal and
Oepen, 2005]; to learn with non-linear features from pairwise preferences in terms of
BLEU [Sokolov et al., 2012b]; to train with interleaved multi-task learning steps for
learning sparser models [Duh et al., 2010]; or to train using gradient-free methods,
e.g. using a gradient approximation by perturbation [Lambert and Banchs, 2006].

Reranking was also applied to learn from users in a CAT setup: Cesa-Bianchi
et al. [2008] present an application of the structured perceptron to learn from
user-provided post-edits, using BLEU for selecting oracle translations.

4.5.1.1 Reranking with the Structured Perceptron

In contrast to parse reranking [Collins and Koo, 2005], the correct translation or
structure is more often than not not included in the k-best list of translations in
SMT. While there are acceptable or even good translations, matching a given string
exactly is problematic. This has a number of reasons: K-best lists are very coarse
approximations of the vast true search space of the system, and since the linear
model used for search is error prone and hard to learn, it is no wonder that the
correct one15 is not to be found in the list. Furthermore, a single string (the surface
form of a translation) may be derived in a number of ways, leading to ambiguous
feature representations. No single true derivation of the reference translation can
be used for learning because of this. Fundamentally, if the reference translation
contains vocabulary that was not observed during training of the translation system
Ð and is not made up from tokens that can be simply copied to the output by
passing-through Ð the reference translation is deőnitely not reachable without
changing the underlying system.

Thus, previous approaches in k-best reranking relied on selecting an oracle
translation according to a error metric, e.g. BLEU or TER, as a stand in for the
true reference translation.

We can deőne the structured perceptron as follows: The decision function is a
argmax returning the best scoring structure (string and its derivation) according
to a linear model w:

(ê, ĥ) = argmax
(e,h)

⟨w, ϕ(f, e, h)⟩, (4.1)

where ϕ(·) is a joint feature representation, which may either be directly taken
from the derivation, or be constructed using arbitrary features. Note that the
argmax is approximated as a k-best list in k-best reranking.

In the structured perceptron algorithm, an error occurs if the returned translation
ê is not identical to the reference translation e∗ (or the MT metric’s oracle). If

15Correct in the sense of exactly resembling the reference translations.

150

4.5 Online Adaptation by Reranking

Annex to the Technical Offer

Allegato all’ Offerta Tecnica

Figure 4.2: Sample output of the constrained search algorithm including two un-
aligned source and target words. Example adapted from [Bertoldi et al.,
2014; Wäschle et al., 2013].

there is a mistake, an update of the weights is performed by:

wt+1 ← wt +
(

ϕ(f, e∗, h∗)− ϕ(f, ê, ĥ)
)

, (4.2)

where e∗ is the reference translation16 and ĥ its derivation. Note that in an
external reranker we can also fully ignore the derivation, i.e. by using a feature
mapping ϕ(f, e). Instead of a k-best BLEU oracle or limiting the update procedure
to reachable reference translations as Liang et al. [2006a], we propose in this
work the use of a robust variant of forced decoding as presented by Cettolo et al.
[2010]: Given the complete set of translation options17, a dynamic program őnds an
optimal, non-overlapping segmentation of the reference translation with a subset of
the translation options. The criterion18 of the algorithm is source- and target-side
coverage. Note that the algorithm őnds a set of translation options, regardless
whether all parts can be covered Ð this means that the algorithm allows gaps
in both source and target. By using this algorithm we can always19 obtain a
derivation of the reference translation in terms of the phrase-pairs of the underlying
SMT system.

The approach taken here closely resembles the bold updating approach in the
perceptron-based discriminative learning algorithm proposed by Liang et al. [2006a],
who also use a structured perceptron. In contrast to our work, they discarded all
examples that were not reachable by the decoder, i.e. where they could not obtain
a derivation for the reference translation, which is why they were only able to use
a maximum of 32% of their total available training data.

A further advantage of using the structured perceptron for reranking is the
lack of hyperparameters20, which eliminates the need for a development set. This

16Using BLEU or TER oracles as a stand-in for reference translation also enables the use of
multiple references.

17Phrase-table entries for each source span in PBMT.
18The algorithm additionally takes a distortion penalty into account.
19Unless nothing can be covered by existing phrase-pairs.
20The initial weight vectors are 0, so there is no need for a learning rate.

151

4 Learning Preferences from Post-Edits

renders k-best reranking as a portable, fast and simple method for learning user-
and/or data-speciőc adaptation models.

4.5.1.1.1 Feature Representation

The joint feature representation for a pair of source f and target translations e in
k-best reranking can be deőned freely. For immediate adaptation and following our
previous work on ranking for SMT we implement a rich sparse feature set, covering
both generative models of the baseline SMT system:

• Phrase pairs: Every phrase-pair used in the derivation of the reference
translation obtained by the constrained search method is used as a feature.
This resembles a discriminative phrase-table. Feature values are derived from
the size of the source span of the phrase-pair, to encourage the use of longer
source spans.

• Target N -grams: All N -grams (N = 1, . . . , 4) in the reference translation
are used as individual features, using the respective N as the feature value,
putting by default more weight on longer sequences. This actually constructs
a discriminative language model [Akabe et al., 2014].

We use features with values derived from lengths instead of using simple (counting)
binary features as we found a beneőcial effect on BLEU scores in preliminary
experiments. In contrast to Cesa-Bianchi et al. [2008] we obtained best results
combining these feature templates, and by including the source in the phrase-pair
features. An example of the result of constrained search is depicted in Figure 4.2:
Translating from English into Italian, two phrase-pair features are extracted Annex
→ Allegato (with feature value 1.0) and to the → all’ (feature value 2.0). Since the
last tokens in source and target segments were not covered by the constrained
search, no phrase-pair feature could be extracted21. N -gram features cover the
full 4-gram Allegato all’ Offerta Tecnica, and all included lower rank N -grams. This
way non-aligned target sequences can be used in the features of the discriminative
reranker22.

These features only őre if they contain (for phrases on source- and target-sides)
at least one content word. To this end we use language-speciőc lists of stop words.

4.6 Experiments

We evaluated the k-best reranking approach for online adaptation on three domains
and an equal number of language pairs. All experiments use a static set of reference
21These phrase-pairs can be covered using a heuristic alignment, aligning non-ambiguous sequences

in source and target, i.e. exact 1:1 correspondences, cf. [Bertoldi et al., 2014].
22If new phrase-pairs can be learned from data, these can also be included in the feature set of

the reranker.

152

4.6 Experiments

translations in lieu of post-edits. In essence this is an identical setup as the online
tuning described in the previous chapter, yet there is only a single training epoch
and, according to the online learning protocol, an output is produced for each
example before training on it. This reŕects the simulated PE setup [Hardt and
Elming, 2010]. However, since we include real post-edited data obtained from a
similar MT system, the evaluation should give realistic estimates of human-targeted
translation metrics [Snover et al., 2006].

For all data setups we build phrase-based systems with the Moses toolkit [Koehn
et al., 2007] using its default settings. Case-sensitive translation- and lexicalized re-
ordering models are estimated on the parallel for each data setup. 5-gram language
models are estimated using the IRSTLM [Federico et al., 2008] software using the
target-side of each parallel data set. All language models are estimated including
Kneser-Ney smoothing [Ney et al., 1994; Chen and Goodman, 1996]. The model
further includes count-based penalties for word- and phrase applications as well as
a distance-based distortion model. All features are tuned on held-out data with
Mert using Set-0–2 for each conőguration. Note that these features and their
weights are not used by the k-best reranker, so that k-best lists can be generated
in a single step before experimentation. Development of the k-best reranker was
performed on Set-0–2 of the English-to-Italian IT data.

For some experiments we employ the caching-based adaptation approaches
presented by Bertoldi et al. [2013] and Wäschle et al. [2013] (cf. [Bertoldi et al.,
2014]). Speciőcally we employ the markup-based (Markup) translation model
adaptation based on the same algorithm as used for the reranker, as described
in [Wäschle et al., 2013]. We use the model in its full conőguration, i.e. adding
new23, known and full segments to the local model. Phrases are annotated greedily
from left to right, without overlapping due to the used markup. Weights for each
phrase-pair are estimated with relative frequency estimation.

Additionally we use the translation- (TM Cache) and language model (N-gram

Cache) caches as described in [Bertoldi et al., 2013] and speciőcally in [Wäschle
et al., 2013]. These models implement exponentially decaying caches for (non-
overlapping) N -grams and phrase-pairs. Since these two models are associated to a
features integrated into the log-linear model, their weights are estimated on Set-0

for each data conőguration.
In all cases where we use the additional local models, the process of generating

k-best translations is repeated for each setting including the respective adaptation
method. While these methods may learn similar information about phrase-pairs
as the reranker, it is important to note that the markup-based adaptive phrase-
tables also have the ability to learn new rules by aligning unambiguous gaps
of the constrained search system, which in turn are treated as features by the

23In this model, new phrases can be extracted from unambiguous gaps.

153

4 Learning Preferences from Post-Edits

Task & Translation Direction # Segments

IT English-to-Italian 1.2M

Legal English-to-Italian 2.3M

Legal Italian-to-English 2.3M

Patent English-to-German 4.2M
Patent German-to-English 4.2M

Table 4.1: Training data for building the phrase-based machine translation systems
for the simulated post-editing experiments with k-best reranking. Table
adapted from [Bertoldi et al., 2014].

discriminative reranker.
Note that we are using the exact same baseline- and adapted (for TM Cache,

N-gram Cache, and Markup) systems as shown in [Wäschle et al., 2013] as
starting points for our reranker.

Statistics for the training data for each data setup are depicted in Table 4.1.

4.6.1 IT Data

The IT data is a collection of English-Italian manuals for software products, con-
sisting of freely available data from the OPUS corpora [Tiedemann and Nygaard,
2004] and commercial data. Translation direction is from English-to-Italian. The
test data consists of eight consecutive documents from the commercial data. For
data sets Set-6 and Set-7 there are four sets of references available (A-D), these
are actual post-edits created by four independent translators with a static SMT
system24. Note that the translators could choose which segments to translate őrst,
resulting in different orders of the segments. This is why the repetition rates differ
for all version of test sets Set-6 and Set-7.

Results for k-best reranking for each set are depicted as a scatter plot in Figure
4.3. The visualization shows BLEU and TER score differences to the respective
baseline. The baseline (without any adaptation) scores are depicted in Table 4.2.
By reranking the baseline system’s outputs, improvements are achieved for almost
all data sets, except for set Set-6D, where one translator apparently chose a
non-optimal sequence of translations (for the reranker). For the same set, but with
other translators’ references, improvements up to 1 %BLEU score are achieved, and

24The system was similar, but not identical to the same one we used here for our experiments on
reranking.

154

4.6 Experiments

Test Set # Segments %RR Source %RR Target %BLEU Baseline %TER Baseline

Set-0 420 13.3 12.0 25.6 53.7
Set-1 931 16.7 16.9 24.0 53.7
Set-2 375 14.1 12.1 23.0 54.9
Set-3 289 12.9 12.0 22.1 57.8
Set-4 1,000 16.0 15.8 21.4 56.0
Set-5 864 11.7 10.9 24.2 55.2

Set-6A 160 9.4 8.4 41.5 39.0
Set-6B 160 9.5 8.2 41.0 40.7
Set-6C 160 9.7 10.4 35.5 45.8
Set-6D 160 9.9 8.9 39.0 43.7

Set-7A 176 14.0 13.7 39.9 40.5
Set-7B 176 15.2 12.4 31.1 49.4
Set-7C 176 13.8 12.7 37.5 43.6
Set-7D 176 12.5 12.9 37.3 43.9

Table 4.2: Statistics for test sets used for simulated post-editing experiments for
IT English-to-Italian system, along with scores for the 1-best results,
as well as repetition rates (RR) for the source and target segments (cf.
Section 4.6.4.1). Table adapted from [Bertoldi et al., 2014].

155

4 Learning Preferences from Post-Edits

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

IT English-to-Italian

Baseline
+Markup

+N-gram Cache

Figure 4.3: Results for the k-best reranking adaptation on English-to-Italian IT

data: Positive results are located in the bottom right quadrant, with
an increase in the BLEU score and a decrease in TER. Figure adapted
from [Bertoldi et al., 2014].

156

4.6 Experiments

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

IT English-to-Italian

+TM Cache

+TM Cache +N-gram Cache

+Markup +N-gram Cache

Figure 4.4: Second set of results for the k-best reranking adaptation on IT English-
to-Italian data. Figure adapted from [Bertoldi et al., 2014].

overall a maximum of about +2.6 %BLEU and −2.1 %TER (Set-7A). Scoring
with TER, two sets show deőcient performance, one rather insigniőcant at +0.1
%TER (Set-0), the other being more pronounced (Set-6D at +0.5 %TER).

We also report on systems with applied adaptation by either the Markup local
model or the N-gram Cache in Figure 4.3. We observe additional gains up to
+2.1 %BLEU, but also reductions in quality up to −1.6 %BLEU when applying the
reranker to a baseline system using the Markup adaptation. With the N-gram

Cache we observe a similar behavior, although there are improvements up to
+4 %BLEU and reduction in TER up to −2.6 %TER. This suggests a degree of
non-additivity between the k-best reranking and these other local models.

We further tried reranking on top of the TM Cache and combinations of the
translation model adaptation techniques and the N-gram Cache. Results are
depicted in Figure 4.4. Again, we observe mixed results for these combination of
adaptation methods.

4.6.2 Legal Data

For the Legal domain, training and test English-to-Italian and English-to-Spanish
data is taken from the JRC-Acquis data [Steinberger et al., 2006]. For the test data
a number of consecutive documents were extracted according to the Eurovoc subject
classiőcation (all data from selected subjects were excluded from the training data).

157

4 Learning Preferences from Post-Edits

Test Set # Segments %RR Source %RR Target %BLEU Baseline %TER Baseline

Set-0 551 11.8 12.5 36.5 49.2
Set-1 514 11.9 12.8 36.3 49.5
Set-2 571 18.2 16.7 37.8 43.7

Set-3A 91 9.4 7.5 46.4 37.8
Set-3B 91 8.5 7.9 49.7 33.1
Set-3C 91 8.8 9.0 32.6 44.4
Set-3D 91 9.7 7.4 49.0 35.0

Table 4.3: Statistics for test sets used for simulated post-editing experiments for
the Legal English-to-Italian system, along with scores for the 1-best
results. Table adapted from [Bertoldi et al., 2014].

Additionally, for English-to-Italian, a recent document was taken from the EUR-Lex
platform and was translated by four translators (Set-3A–D).

On the English-to-Spanish data we explored how adaptation by k-best reranking
performed using single documents with a low number of segments: Set-4–12

(Set-0 is the concatenation of these sets). Statistics for all Legal test sets are
depicted in Tables 4.3 and 4.4.

The results for the English-to-Italian Legal experiments are depicted in Figure
4.5. On this domain and language pair, the results of the k-best reranker appear
deőcient in terms of both TER and BLEU. We suspect this is due to the bias
towards higher N for the N -gram features and longer source phrases for the phrase-
pair features. Reranking does not seem to be able to reliably improve over systems
with translation model adaptation Markup and the N-gram Cache.

Following the English-to-Italian IT evaluation we also tried combinations of
N-gram Cache and both of the translation model adaptation method in addition
to the reranking. As for the previous results on this data, we do not observe much
improvement when using the reranker on top of the other methods.

English-to-Spanish experiments are depicted in Figure 4.7. Although the same
source segments were translated, results for the Spanish system are much improved
by the reranking when used on top of the baseline system: up to −1.2 %TER
reduction and +0.7 up to +1.4 %BLEU improvement for Set-0–2. A performance
degradation occurs on one of the small documents which make up Set-0 (−0.3
%BLEU and +0.1 %TER). Notably, we observe improvements for all small data
sets Set-3–11, with only two exceptions, where translation quality is reduced
by a maximum of about −0.4 %BLEU and +0.1 %TER. This is evidence for a
non-portability characteristic of the reranking models.

The results on top of the other adaptation methods look similarly: BLEU is not

158

4.6 Experiments

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

Legal English-to-Italian

Baseline
+Markup

+N-gram Cache

Figure 4.5: Results for the k-best reranking adaptation on Legal English-to-Italian
data. Figure adapted from [Bertoldi et al., 2014].

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

Legal English-to-Italian

+TM Cache

+TM Cache +N-gram Cache

+Markup +N-gram Cache

Figure 4.6: Second set of results for the k-best reranking adaptation on Legal

English-to-Italian data. Figure adapted from [Bertoldi et al., 2014].

159

4 Learning Preferences from Post-Edits

Test Set # Segments %RR Source %RR Target %BLEU baseline %TER baseline

Set-0 551 11.8 14.8 42.4 43.2
Set-1 514 11.9 14.9 42.4 43.4
Set-2 571 18.2 18.1 42.6 40.3

Set-3 90 2.6 15.8 48.3 36.8
Set-4 30 13.5 14.6 34.7 50.2
Set-5 50 7.9 12.7 33.8 52.1
Set-6 40 18.4 19.2 38.3 48.3
Set-7 40 11.9 17.2 37.2 49.3
Set-8 60 11.2 13.8 40.4 44.0
Set-9 70 12.8 15.3 47.7 34.4
Set-10 70 11.7 12.7 42.8 40.2
Set-11 101 11.7 14.2 51.2 34.5

Table 4.4: Statistics for test sets used for simulated post-editing experiments for
the Legal English-to-Spanish system, along with scores for the 1-best
results. Set-0 is the concatenation of Set-3–11. Table adapted from
[Bertoldi et al., 2014].

improved only in three of 24 cases, with a maximum degradation of −0.4. TER
scores are higher in seven of 24 cases, with a maximum degradation of +0.7.

On this language pair and domain, reranking presents itself as a viable approach
for improving translation quality. Compared to the English-to-Italian system we
can observe, since Set-0-2 data sets are the same and also the used MT systems are
similar, that the baseline translation quality seems to have an impact on adaptation
performance Ð the baseline English-to-Spanish system performs about 5 to 6
%BLEU better on the same data sets (in opposing translation direction).

4.6.3 Patent Data

Lastly we experimented with German-English patent data extracted from the
PatTR corpus [Wäschle and Riezler, 2012b], containing content from all patent
sections (titles, abstracts, and descriptions).

For testing we used ten complete patent documents from section E (’Fixed
Constructions’). The training data did not contain any data from this section. All
documents were used in both translation directions. Statistics for the test sets are
depicted in Table 4.5.

Results for German-to-English and English-to-German are depicted in Figures
4.8 and 4.9 respectively. For both translation directions, results with the k-

160

4.6 Experiments

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

Legal English-to-Spanish

Baseline
+TM Cache +N-gram Cache

+Markup +N-gram Cache

Figure 4.7: Results for the k-best reranking adaptation on Legal English-to-
Spanish data. Figure adapted from [Bertoldi et al., 2014].

Test Set # Segments %RR Source %RR Target %BLEU Baseline %TER Baseline

Set-0 318 15.7 8.9 22.6 / 34.8 60.1 / 45.0
Set-1 304 13.3 6.9 13.3 / 24.5 76.2 / 58.2
Set-2 222 21.1 15.6 20.8 / 26.1 67.3 / 61.8

Set-3 300 17.1 9.4 26.2 / 34.8 57.5 / 47.7
Set-4 227 19.8 13.8 17.2 / 24.1 66.6 / 63.0
Set-5 239 16.6 11.6 22.1 / 30.4 60.5 / 52.1
Set-6 232 17.7 11.9 16.6 / 26.3 68.1 / 57.7
Set-7 230 19.3 14.4 20.1 / 33.1 58.5 / 49.4
Set-8 225 16.9 10.0 26.6 / 36.2 53.9 / 49.0
Set-9 231 19.2 14.1 21.0 / 31.8 59.2 / 52.1

Table 4.5: Statistics for test sets used for simulated post-editing experiments for the
Patent English-to-German / German-to-English systems, along with
scores for the respective 1-best results. Repetition rates are depicted for
the English-to-German direction. Table adapted from [Bertoldi et al.,
2014].

161

4 Learning Preferences from Post-Edits

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

Patent English-to-German

Baseline
+TM Cache +N-gram Cache

+Markup +N-gram Cache

Figure 4.8: Results for the k-best reranking adaptation on Patent English-to-
German data. Figure adapted from [Bertoldi et al., 2014].

best reranker are improved for most of the documents and adaptation settings.
Deőcient or neutral behavior on both TER and BLEU is often observed adapting
to Set-1, on both translation directions and all baselines. The improvements for
German-to-English are strikingly better: While the maximum improvements on
English-to-German are modest at about +1.4 %BLEU and −1.2 %TER, the gains
for German-to-English are much higher at +3.5 %BLEU and −2.4 %TER. Note
that the exact same data sets were used for both directions, which indicates that,
since also the MT systems were similar, there is some language dependency. We
also register that the baseline quality for the German-to-English system was largely
better.

4.6.4 Analysis

For all data sets there were some documents where reranking could not improve the
respective baseline results. Since sets Set-0–2 were used for tuning with Mert,
improving over the tuned system is inevitably hard, even more so for an external
tool, which cannot change the baseline system. Furthermore, since all reranking
experiments use the 0 vector as starting weights, the initial predictions will be very
weak, amplifying the difficulty improving on a data set that was used for tuning
the baseline system.

We also observed that higher baseline translation quality had a positive effect

162

4.6 Experiments

−4

−2

0

2

4

−4 −2 0 2 4

∆
%

T
E

R

∆ %BLEU

Patent German-to-English

Baseline
+TM Cache +N-gram Cache

+Markup +N-gram Cache

Figure 4.9: Results for the k-best reranking adaptation on Patent German-to-
English data. Figure adapted from [Bertoldi et al., 2014].

on adaptation results with reranking. However, adaptation by reranking on top of
already adapted systems often does not lead to improved results. However, overall,
as translation quality is often affected positively and the negative outcomes are
not catastrophic, we conclude that the developed reranking method is a viable tool
for adaptation. But we did observe some problems with portability of the models,
which could be addressed e.g. by backward feature selection or similar techniques.

4.6.4.1 Repetition Rate

To further analyze cases where reranking lead to deteriorated results, we analyze
the data in terms of the repetition rate [Bertoldi et al., 2013], which is deőned as a
geometric average over N -grams in evenly sized windows of consecutive tokens:

RR =

[
4∏

n=1

(
∑

w∈W

|gn(w)| − |gn(w)|1
|gn(w)|

)]1/4

, (4.3)

where W is the set of windows within the data (we use a windows size of 1,000
tokens), gn(·) returns all N -grams within a given window, | · | counts all N -gram
types and | · |1 counts all types which occur only once (singletons).

Inspecting the source-side repetition rates and their averages, contrasting them
with degenerate adaptation by reranking over the baseline system, we observe that

163

4 Learning Preferences from Post-Edits

Data Avg. RR

IT en-it Set-0: 13.3 Set-6D: 9.9 12.8

Legal en-it Set-0: 11.8 Set-1: 11.9 Set-2: 18.2 Set-3A–D: 9.1 (Avg.) 11.2
Legal en-es Set-3: 2.6 Set-5: 7.9 Set-8: 11.2 12.0

Patent en-de Set-1: 13.3 17.7
Patent de-en Set-0: 8.9 Set-1: 6.9 11.7

Table 4.6: Repetition rates versus average RR on sets with degraded translation
quality through reranking (in terms of BLEU or TER).

most deőcient results occur on below average repetition rates, see Table 4.6.
To further analyze this issue, we build an ordinary least squares regression

model with the %BLEU and %TER deltas as dependent variables, predicted by
the repetition rate for each document. While TER did not show any signiőcant
dependency on the repetition rate, a signiőcant effect (p < 0.03) for %BLEU can be
observed (F (1, 51) = 5.550, R2 = 0.098). The improvement is about +1 %BLEU
for each percentage point increase in RR.

Concerning the English-to-Italian Legal data, Bertoldi et al. [2014] and Bertoldi
et al. [2013] also obtained mixed results for different adaptation methods using this
data.

Wuebker et al. [2015a] conőrm the connection between repetition rate and
adaptation performance using patent data. Similar őndings have been reported by
Bertoldi et al. [2013], Bertoldi et al. [2014] and Cettolo et al. [2014a] for software
manuals, legal documents and transcribed spoken language.

164

5 Learning Preferences from Human Interaction

“Statistical inference is serious business.ž
[Efron and Tibshirani, 1994]

As we established in the previous chapter, online adaptation is a viable approach
in CAT to overcome the inherent issues of mismatches between the domain of
data, the style of translators and the training data of MT systems, as well as their
general shortcomings in modeling.

We argue however, that a more immediate, direct adaptation can be achieved by
a richer interface between user and the MT system, or by using NMT to directly
learn from user feedback without further approximation.

We therefore develop a new graphical user interface, allowing the edition of an
SMT system’s derivations. This enables the creation of rich feedback that can be
used for adapting MT systems. We additionally develop a traditional editing user
interface for PE with statistical- and neural MT backends to be used in translation
user studies. We employ the interface for two studies, proving the effectiveness of
both adaptation approaches.

First, related work in IAMT and user interfaces for CAT are discussed. We
then describe our user interface design, and review evaluation in CAT. Then,
our approach for direct adaptation of a traditional SMT system is described and
evaluated. Finally, we present an effective adaptation approach for NMT systems,
which is also evaluated in a real user study.

5.1 Interactive Machine Translation

First IAMT systems followed a pre-editing approach, helping the MT system in
disambiguation with phenomena that it found unclear. This process is however not
carried out prior to MT, but rather during translation, by interactions between a
translator and the machine [Kay and Martins, 1970].

A more modern approach, similar to predictive typing [Darragh et al., 1990], is
proposed by Foster et al. [1996] and Foster et al. [1997], and was later explored
in the TransType projects for the word- [Langlais et al., 2000a] and phrase-based
[Esteban et al., 2004; Casacuberta et al., 2009] SMT approaches.

While being an attractive concept, IAMT systems are difficult to implement:
Both the MT system [Och et al., 2003b; Cubel et al., 2003; Ortiz-Martınez et al.,
2016; Barrachina et al., 2009; Ortiz-Martínez et al., 2009; González-Rubio et al.,

165

5 Learning Preferences from Human Interaction

2013] and the user interface1 need special considerations. Due to the special
interface, translators that want to use an IAMT system have to overcome a steep
learning curve2 [Alabau et al., 2012; Green et al., 2014c]. Furthermore, studies
comparing IAMT approaches to traditional PE, show at best mixed for both time
[Sanchis-Trilles et al., 2014; Green et al., 2014c; Underwood et al., 2014], as well as
quality [Sanchis-Trilles et al., 2014; Green et al., 2014c; Underwood et al., 2014;
Koehn, 2010] for the IAMT approach.

5.2 Immediate Adaptation from Post-Edits

As we have shown in Chapter 4, gains in translation quality are possible by exploiting
feature representations of post-edited translations, given that the data set used is to
some extent suitable3 for adaptation. However, as shown by Wäschle et al. [2013]
and Bertoldi et al. [2014], larger gains are possible by adapting the translation
and language models directly. This őnding is also conőrmed by Denkowski et al.
[2014a], who see greatest improvements by adaptation of the generative models,
and not by adaptation of the log-linear weights.

Other approaches using k-best reranking4, for online adaptation have shown
mixed results: Cesa-Bianchi et al. [2008] only report an incrementally calculated
sum of per-sentence BLEU scores on a test set of 1K sentences limited to 25
tokens per sentence, using target phrase- and word features, resulting in an average
per-sentence improvement of about 0.07 %. Martínez-Gómez et al. [2011], report a
maximum of 0.7 %BLEU improvement and 2.5 %TER improvement. Although
these numbers are not comparable, these two data points in addition to our own
work seem to suggest that the improvements possible by ranking or reranking are
limited, at least when used in isolation.

In addition, different forms of IAMT were shown to be able to greatly improve
translation outputs: Cheng et al. [2016] present a pick-revise framework, allowing
a user to select parts of a translation deemed as correct, triggering a re-decoding
step where the translation system is forced to use the selected parts as partial
translations for the parts of the source to which the correct phrases are aligned5.
While not presenting a model for adaptation using the feedback generated in this
way, they present an evaluation via simulation which suggests that very large

1NMT systems can trivially support IAMT by prefix decoding [Knowles and Koehn, 2016; Peris
et al., 2017b; Wuebker et al., 2016], but the user interface still has to be designed accordingly,
and strict constraints concerning responsiveness have to be taken into account.

2Adopting the popular usage of the phrase “steep learning curve”, i.e. being hard to learn.
3Suitable in terms of sufficient structure, e.g. as measured by repetition rates.
4Using oracle translations defined by per-sentence quality scores instead of the true reference

translations.
5In their work, using a PBMT system, possible selections are constrained by the phrase segment

given by the translation system, trivially allowing to use the alignment with each phrase for
such partial forced decoding.

166

5.2 Immediate Adaptation from Post-Edits

improvements are possible using the approach. The experiments also show that
free-form corrections are superior to the left-to-right approach in their framework.
A caveat of their approach is that since they rely on forced decoding, unreachable
parts cannot be taken into account. Marie and Max [2015] previously presented a
similar approach, also exploiting user feedback by selection of arbitrary parts of the
translation hypotheses, but instead of using partial forced decoding, they employ
adaptive phrase-tables and language models similar to the cache-based approaches
of Bertoldi et al. [2013] and Wäschle et al. [2013]. However, instead of using
a single cache, they propose łpositivež and łnegativež caches for discriminating
correct from incorrect parts in re-decoding. The negative caches are őlled with
items not explicitly marked as correct by a user. They also show large gains in
a simulation experiment. Gao et al. [2011] propose another approach for using
adapted translation models by using a separate phrase-table, as well as Hardt and
Elming [2010], which focus on an application in terms of post-editing. Domingo
et al. [2016] present an evaluation of the general approach of Marie and Max
[2015] focusing on post-editing effort. They also show that free-form selection
improves over a left-to-right approach [Barrachina et al., 2009] in post-editing effort
in simulated experiments.

Callison-Burch et al. [2004] present a user interface to őx incorrect alignments in
the training data of a PBMT system, as well as means to leverage user corrections
using a static word alignment model for re-alignment followed by a phrase-extraction
step. Lastly, Sanchis-Trilles et al. [2008] show that information about correct parts
of the hypothesis can be inferred by user behavior in the form of mouse actions,
which can be successfully used for updating the hypothesis in an interactive trans-
lation environment.

In a different line of work, Albrecht et al. [2009] show, that by using a richer
user interface [Albrecht, 2008], MT outputs can be post-edited more effectively by
monolingual non-experts [Schwartz, 2014], helping with the ineffectiveness that was
observed with monolingual PE [Nitzke, 2016; Mitchell et al., 2013]. Also, further
methods have been tried for enabling monolingual PE, e.g. using additional aids
inspired by IAMT [Koehn, 2010], or collaborative approaches [Hu, 2009; Hu et al.,
2010; Yan et al., 2014].

Word alignments have been used for improving CAT systems: After presenting
anecdotal evidence in [Schwartz et al., 2014], Schwartz et al. [2015] show that
displaying word-alignment in the PE process may help post-editors when baseline
machine translation quality is insufficient. Blain et al. [2012] use a pivotal word-
alignment from machine translation output to post-edit inferred from a automatic
string distance metric for learning corrections of the MT system.

Concerning specialized adaptation in IAMT, Foster et al. [2002b] show that in a

167

5 Learning Preferences from Human Interaction

left-to-right IAMT preőx completion framework, the number of keystrokes that a
translator has to perform can possibly6 be signiőcantly reduced by automatically
maximizing the expected beneőt of suggested completions. Wuebker et al. [2016]
also show large gains (using a simulated evaluation) in terms of quality of suffix
predictions for an IAMT approach when tuning towards specialized metrics such
as next word prediction accuracy (WPA).

Inspired by these previous works on specialized IAMT and adaptation, we
determined that a good CAT system with adaptation system would have the
following features:

• Use PE for ease-of-use;

• Utilize MT systems that are able to output high quality translations hypothe-
ses;

• Provide a rich representation of the post-edit that can be used for adaptation;

• For adaptation, adapt all parts of the model, with a focus on the generative
models in SMT.

In the following we describe two approaches that satisfy these conditions.

5.2.1 Graphical Post-Editing Interface for Immediate Adaptation

User interfaces for PE are mostly constrained to the same basic setup, varying the
positions of the text for the to-be translated source segment relative to the input
őeld used for the translation.

Another possibly more important factor is introduced by additional aids provided
to the translator, e.g. modules to access matches of a TM in addition or as an
alternative to MT outputs, a concordance tool7, or glossaries8. Access patterns to
the to source material can also be designed, e.g. employing pagination, allowing or
disallowing revision of őnished translations, pre-translation of all source segments
with an MT system (which has to be re-run after each őnalized translation in an
online adaptation setup), or enforcement of linear processing of the data.

Interfaces for prediction-based IAMT have to cope with additional complexities
to display possible continuations of preőxes, and adhere to tight latency restrictions
[Foster et al., 2002a; Green, 2014], while integration of MT output in a PE setup

6The evaluation is carried out by simulations.
7A concordance tool can query a corpus for occurrences of words, displaying typical contexts or

usage examples.
8Possibly project-specific dictionaries, with additional information that can be used for disam-

biguation, similar to a termbase.

168

5.2 Immediate Adaptation from Post-Edits

Figure 5.1: Partial view of an exemplary use of the graphical PE user interface.
Figure adapted from [Simianer et al., 2016].

is straight-forward and does not impose such strong requirements to latency9.
Examples for modern interfaces for research in CAT are described in [Denkowski
et al., 2014b; Federico et al., 2014; Alabau et al., 2013a; Denkowski and Lavie,
2012; Aziz et al., 2012; Roturier et al., 2013].

For a őrst approach, we developed a graphical interface that enables extraction
of speciőc corrections to the MT outputs which can be used for effective adaptation,
without relying on approximations introduced by automatic alignment algorithms.
An example of the graphical interface is depicted in Figure 5.1. When translating
from English into German, the interface shows the source sentence on top, and
the target translation on the bottom. The approach uses a phrase-based MT
system. We visualize the phrase segmentation by boxes with rounded corners,
phrase-alignments are shown as solid lines between the respective source and target
phrases. The target can be freely edited, removal and creation of target phrases
included. Alignment links between source and target can also be changed. Only
the source segmentation is őxed in the interface10. All operations only apply for
the row displaying the target phrases, but not the source row. Alignment links are
added as well as removed by őrst selecting a source phrase and then a target phrase.
The interface allows for arbitrary many-to-many alignments. The contents of the
phrase are edited by the standard facilities of a text box, which in most cases also
allows jumping between tokens by a keyboard shortcut and the positioning of the
cursor by using a pointing device. To őnalize the post-edition, all target phrases
have to be explicitly marked as őnished. For reference, the aligned source phrases
are also marked as őnished when all aligned targets were marked. Source and
target phrases may remain unaligned, but a warning is issued before submission of
the translation in such a case, allowing for cancellation of the submission.

In addition to the graphical interface, we also implemented a standard text-based

9There is no direct interaction between the user and the machine in PE which would impose
such limits.

10We determined that allowing the edition of the source-side with the same degrees of freedom as
the target-side would possibly overburden the users.

169

5 Learning Preferences from Human Interaction

interface, replacing source and target rows by plain text őelds. This allows for text
editing (on the target side) by standard means provided by the operating system,
which are the same as editing phrase contents in the graphical interface.

To the best of our knowledge, no such interface has been used for online adaptation
in SMT before: There are tools for visualization of translation derivations for
research purposes, which cannot be used for anything else besides inspection
[DeNeefe et al., 2005; Weese and Callison-Burch, 2010]. Tools for research in PE
[Koehn and Germann, 2014] and logging [Jakobsen, 1999; Carl, 2012] can also be
useful for exploring the translation process, but were not used for adaptation. A
similar interface to ours [Albrecht, 2008], has been shown to improve monolingual
PE [Albrecht, 2008]. Alignment visualization is also utilized in evaluation of MT,
providing further insights into the translation process [Girardi et al., 2014; Berka
et al., 2012]. In other works (word-) alignment visualization is integrated in the
interface, but serving no further practical purpose [Alabau et al., 2013a; Schwartz
et al., 2014].

5.2.2 Phrase Alignment for Hierarchical Derivations

The phrase-alignment needed for the graphical interface would be trivial to achieve
in a phrase-based system using ŕat, non-hierarchical phrases, since it is part of
the output of the translation system. This is however not the case in the Hiero
approach that we employ11, as it allows rules with gaps, and derivations correspond
to pairs of parse trees.

With Hiero and the constraints of allowing two non-terminals per rule, without
allowing consecutive non-terminals, a total of 15 different rule shape conőgurations
are possible on the target side. Out of the 15, nine allow to trivially produce
a phrase-alignment since they consist of only a single consecutive group of non-
terminal symbols which can be aligned using a single alignment link, disregarding
the internal word-alignment.

Three shapes (six, when respecting the relative alignment of non-terminals) pose
problems for the production of a phrase-alignment:

a X b X (5.1)

X a X b (5.2)

a X b X c (5.3)

11We use Hiero because of the good translation quality we obtained with the approach in our
work on SMT optimization.

170

5.3 Adaptation

a and b being non-empty groups of terminal symbols. In these rules, since
terminals contained in a, b or c can have arbitrary word alignments12 to the source,
it can be impossible to produce a valid one-to-one phrase-alignment. We resolve
this issue by őrst establishing a source segmentation through heuristically grouping
terminals by the hierarchical phrase boundaries, effectively disregarding the tree
structure, to obtain an ordered set of source phrases. Then, for each target phrase,
we őnd the source phrase with the maximum number of incoming word alignments,
which is then taken to be the single aligned source phrase. If there is a draw, the
őrst phrase is taken, when going from left to right. Using this heuristic, we can
generate a single unambiguous phrase alignment from a hierarchical derivation.
Also note, that this implies that larger phrase-pairs can be broken up in the process.

5.3 Adaptation

In this Section we describe how the graphical user interface can be exploited for
adaptation of the translation model, describe the language model adaptation, and
őnally show how to use Dtrain for online learning in this setting.

5.3.1 Translation Model Adaptation from User Edits

Allowing the user to directly edit the translation derivations of the SMT system
enables the extraction of very őne-grained corrections. This can be straight-
forwardly implemented by generating the differential between the initial derivation
and the őnal user-generated derivation. We always receive a full13 phrase-based
alignment since it is enforced by the user interface.

To this end, after post-editing, the current phrase-alignment (non-aligned phrases
are prohibited) is mapped to a set of hierarchical translation rules, which are then
compared to the rules used in the original derivation, and any rule that has changed
is saved. The result of this procedure is a set of unweighted translation rules, which
we refer to as Edit.

In addition to the translation rules that are extracted from the edits, prior to
translation, the source is checked for any tokens unknown to the MT system. We
query the user to provide the system with suitable translations for all detected
non-translatables. This check is done by comparing the input to the available rules
in the corresponding per-sentence grammar. This results in a set of rules which we
refer to as Unk.

To maximize the impact of the user edits, we further exploit the user-generated
phrase-alignment to produce another set of rules, Auto. We adapt the rule
extraction algorithm of Chiang [2007] for this purpose: From the phrase-alignment,

12Note that this process could be carried out during the original phrase-extraction step.
13Given the user aligned all phrases.

171

5 Learning Preferences from Human Interaction

we extract rules in the same way as in the original, word-based approach. Rules
with a maximum of two non-terminals, and a maximum source length of eight
words are extracted. We further forbid adjacent non-terminals on the source side,
and the maximum seed size is three phrases. This results in a large set of additional
rules.

During this process it can occur that rules are extracted that are already known,
i.e. contained in per-sentence grammars Ð these rules are annotated by a new
feature, denoting them as being seen in the adaptation process. Entirely new rules,
only have a single feature, denoting them as new. Rules that őx non-translatables
are also annotated with a separate feature. Note that the sets Edit, Unk and
Auto are mutually disjoint.

Prior to the translation of a segment, the union of Auto, Unk and Edit is
appended to the respective grammar.

5.3.2 Parameter Adaptation

Similar Denkowski et al. [2014a] we perform online updates of the SMT system’s
linear model after receiving a new training example. Instead of Mira, we use
our online pairwise ranking algorithm Dtrain for this purpose. We employ the
Sparse feature set with our tuning algorithm, possibly adding millions of sparse
features derived from translation rules, to be able to perform őne-grained model
updates. Note that this applies also to the extended rule sets described before,
since the additional rules also őre the respective features.

The general process is in principle identical to the regular online updates. Yet we
need to make sure that there is no degenerate behavior combining the translation
model adaptation and the online updates: Since all reference translations (the
post-edits) are effectively reachable, due to the rule extraction, weights of rule-based
features derived from the reference may be overestimated, especially from rules
covering large parts of the reference, since less rule applications generally lead to
higher model scores. We therefore only add the speciőcally extracted rules in Edit

to the grammar prior to an update, but not the larger set Auto. The rules rules
in Unk are added in any case, since they were used for the initial hypotheses used
for post-editing.

5.3.3 Language Model Adaptation

Language model adaptation is carried out in the same way as proposed by Denkowski
et al. [2014a], adding the post-edits to a hierarchical Bayesian trigram language
model [Teh, 2006]. We update the language model prior to doing a parameter
update.

172

5.4 Implementation of an Online Adaptive Post-Editing System

5.3.4 Adaptation Scheme

The full adaptation scheme (see Figure 5.2) can be described as follows: After the
client service requested a translation of a source segment, a remote service checks
the source for non-translatables. If non-translatables are detected, translations for
each non-translatable word are requested from the user via the local client. After
this step, the remote service annotates the grammar as described, and the segment
is translated and returned to the client. When the post-edition of the segment is
őnished, the server process receives a translation, alongside with a phrase-alignment
and a set of rules that reŕect the alterations done by the user (the Edit set).
The current grammar is then extended with the edited rules, and the adaptive
language model is updated using the post-edit, followed by a parameter update,
which includes another decoding step for generating a new k-best list including the
new rules. Finally, and in any case prior to the translation of the next segment,
the rule extraction process for generating the rules of Auto is carried out with the
current training example.

5.4 Implementation of an Online Adaptive Post-Editing System

Like other modern CAT interfaces, our approach is implemented in a client-server
architecture, where the interface runs locally, but the MT engine, data storage and
associated logic is implemented as a server component [Federico et al., 2014; Alabau
et al., 2013b; Denkowski et al., 2014b]. On the one hand, due to its ŕexibility, this
facilitates distribution of the system Ð on the other hand it is a technical necessity,
since most MT systems cannot run properly on low-powered client machines.

The overall architecture for use with the graphical interface is depicted in Figure
5.2. The client and server processes are assumed to be constantly running. Once
the server receives a client’s translation request, the server őrst checks whether
the payload transmitted with the request contains a őnalized post-edit, which can
be used for adaptation. If that is the case, a four stage update can be performed
as described in Section 5.3. In the joint next step, a per-sentence grammar is
either generated following Lopez [2007] or retrieved from storage. Since the source
segment contains possibly non-translatable tokens, we intersect the source sides
of the rules with the source sides of the per-sentence grammar before translation.
If there are non-translatable words detected, the ŕow returns to the client and
prompts the user for translations of each unknown token separately. After this step,
the őnal grammar for the translation request can be assembled, which is then used
in the decoding step alongside the current parameters. Since the user expects a
naturally constructed sentence, i.e. without tokenization and with proper casing, a
number of post-processing steps have to be carried out. These depend on the exact
MT system, and typically contain a casing step and some form of de-tokenization14.
14The exact procedure will be discussed when presenting the concrete models used in our

173

5 Learning Preferences from Human Interaction

Client Server Update?

Update

1. Update LM
2. Add Edit to grammar
3. Update paramters
4. Rule extraction

Grammar extractor
Generate/retrieve
grammar

Check OOV

Assemble grammar
1. Annotate known rules
2. Add Unk rules
3. Add Edit rules
4. Add All rules

Post-process
1. Case MT output
2. De-tokenize MT output
3. Phrase alignment

MT Engine
Needs: Current parame-
ters, grammar, and input
Returns: Translation

(1) Req. translation (+Payload)

(3b) No

(2) (3a) Yes

(3b’)

(4)

(5b) Has OOV/Request manual translations

(5a)

(5b’)

(6) Translate

(7)

(8)

Figure 5.2: Server-client architecture of the online adaptive post-editing interface
with statistical machine translation engine in a graph-based visualization
with focus on server-side ŕow: Nodes with dark backgrounds represent
abstract processes, diamond shaped nodes are junctions, and regular
boxes represent processing steps. Figure adapted from [Simianer et al.,
2016].

174

5.4 Implementation of an Online Adaptive Post-Editing System

The last step is generating a phrase-alignment from within-rule word alignments,
as described in Section 5.2.2.

5.4.1 Client Interface

The client receives an object containing all information necessary to display phrase-
aligned source and target strings, or just the raw strings. A screenshot of the
interface in text mode is depicted in Figure 5.3. A partial screenshot of the graphical
editing model is shown in Figure 5.1, which replaces source and target őelds. If
the server process requests translations of unknown words, additional paired őelds
are displayed below the target inputs.

The graphical interface is controlled by means of keyboard and mouse. A full
listing of keyboard navigation controls is shown in Table 5.1. It is implemented to
mimic the behavior that the web-browser provides for standard text őelds used
in the text-based interface. The different modes can be accessed via additional
keyboard shortcuts. The default mode is the navigation mode.

The full client-side application as depicted in Figure 5.3 has the following features:
Areas marked with 1 and 2 are source- and target őelds respectively, where the
source őeld is not editable. Below the target őeld are four buttons: A press on the
’Help’ button displays an on-screen help text, ’Pause’ pauses the local timer, ’Reset’
resets the post-edit to the initial state, ’Rate’ (or ’Next’) conőrms the current user
input and requests the next one. 3 is a rating feature which is not used in our
current work, and 4 displays the overall progress, as well as all source segments.

5.4.2 Logging

The client interface logs all interactions with the graphical interface, or the text
őeld in text-based mode. Keyboard or mouse actions outside these areas are not
logged.

Upon receiving a translation, a timer starts, which can be paused by using a
button in the interface, to account for longer unrelated breaks. The reset feature,
while resetting all current progress, does not reset the timer. Translations of
unknown words are not timed.

5.4.3 Efficiency

Although latency is not as much of an issue as in some IAMT approaches, the
overall system needs to be efficient enough to not cause any long, unproductive
pauses. The main source of latency in our approach is the adaptation process as
described in Section 5.3.4, which is inherently not parallelizable and includes a

experiments

175

5 Learning Preferences from Human Interaction

Common shortcuts

Control + z Undo

Control + r Redo

Navigation mode

← Move cursor one phrase to the left

→ Move cursor one phrase to the right

Shift + i Move cursor to the phrase farthest to the left

Shift + o Move cursor to the phrase farthest to the right

Shift + d Delete phrase at cursor’s position

Shift + e Edit contents of phrase at cursor’s position

Move mode

← Move selected phrase one position to the left

→ Move selected phrase one position to the right

Enter Accept current position and return to navigation mode

Mouse controls

Click (on source phrase) Enter, or leave alignment mode for this phrase

Click (on target phrase) Align to currently source phrase if in alignment mode

Double Click (on target phrase) Edit text

Table 5.1: Keyboard and mouse controls for the graphical post-editing interface.

176

5 Learning Preferences from Human Interaction

number of expensive operations. Our model is geared towards not causing any
pauses longer than 10 seconds between segments.

Experimenting with the suffix array-based translation model adaptation approach
for Hiero of Denkowski et al. [2014a], we found that it can take several minutes15

to produce a single grammar, which is unacceptable for our purposes. We thus we
pre-generate all per-sentence grammars prior to translation.

5.5 Evaluation in Computer-Aided Translation

Evaluation in the CAT scenario adds a number of additional aspects to (machine)
translation evaluation, being mostly conőned to measuring quality by string- or
semantic equivalence metrics.

After translation quality, the most important quantity to measure in the transla-
tion process is time, since it directly or indirectly affects cost of translation in the
professional context. In terms of quality, a further aspect comes into play, since
reference translations are naturally unavailable in a realistic setting, automatic
quality estimation techniques [Specia et al., 2009; O’Brien, 2005] are needed if one
does not want to carry out a manual evaluation. However, in arranged user studies,
a ground truth is often attainable either by independently generated reference
translations and/or by (bilingual) human evaluators which assess the correctness
of produced translations.

There is also a more translator oriented perspective on evaluation in CAT Ð
trying to measure technical and cognitive effort the translator has to invest in the
translation process [Krings, 1997]. While technical effort can be readily measured
by counting the number of observed user actions, such as keystrokes and mouse
movements, measuring cognitive efforts is more complex, i.e. passively by making
use of eye-tracking devices [Sekino, 2015; Sharmin et al., 2008], or by using the
so-called read-aloud protocol [Krings, 1997], making the translator explain his
thoughts on the translation, to gain insights into the cognitive process that is
taking place while translating. Time is however a good indicator for cognitive effort
[Koponen et al., 2012] (but not necessarily for technical effort), as is measuring
the number and durations of pauses [Lacruz et al., 2014, 2012]. See [Lacruz et al.,
2014] for an overview on pause-related measures for assessing cognitive effort.

For use in our own work we őrst discuss automatic evaluation of quality in CAT,
then discuss how to efficiency and speed can be measured.

5.5.1 Measuring Speed

Time can be easily measured in CAT by including a timer which is active during
translation. Different approaches can be followed for normalization, since raw time
15For suffix-array-based rule extraction for phrase-based models [Germann, 2015] efficient imple-

mentations have been described [Bertoldi et al., 2017].

178

5.5 Evaluation in Computer-Aided Translation

is not a comparable quantity. Another aspect is how to handle pauses that occur
in the translation process.

Normalization is preferably done using the length of the őnal translation or
post-edit, since the source lengths can be considerably different depending on the
language. This normalization by actually produced (or conőrmed) characters or
words is a realistic approach. In our work we normalize time by target characters
(excluding spaces).

The total post-editing time can also be divided into a number of distinct phases,
i.e. assessment-, editing- and reading time. See [Pinnis et al., 2016], for a more
őne-grained analysis.

Another common approach to measure speed is throughput, which can be
measured as words per hour, minute or working day.

Intuitively, post-editing time is positively correlated with source segment length
[Popovic et al., 2014; Zaretskaya et al., 2016; Koponen, 2012].

5.5.2 Measuring Effort

In CAT, effort refers to any work that is done during the creation of a translation.
It is an ambiguous term, since it can refer to technical effort, which is the actual
amount, or to an estimate of the practical work that is done to create the őnal
translation, or to cognitive effort, which can be described as the amount of mental
processing that goes into the translation process. The cognitive effort can however
be approximated by time measurements, see e.g. [Popovic et al., 2014].

Most commonly, technical effort is measured as a string edit distance, e.g. in
post-editing between initial translation hypothesis and őnal post-edit. TER or
human-targeted TER (HTER) as presented by [Snover et al., 2006] is a standard
approach. However, since the original procedure is costly to carry out16, the most
common method is to simply calculated TER of the MT output against a single
post-edit which created from just the same MT output. The same approach can be
taken with the BLEU score, or sentence-wise BLEU for per-sentence measurements.

The previously described methods only measure technical effort indirectly, since
they only consider the minimal amount of edits needed to arrive at the őnal
translation.

In a user study (or by simulation with certain assumptions) a direct approach
can be taken, by directly recording user actions, e.g. keystrokes and mouse actions.
Barrachina et al. [2009] propose normalization over character in the post-edit,
resulting in three metrics: keystroke ration (KSR17), mouse-action ratio (MAR),
and keystroke and mouse-action ration (KSMR), which is just KSR + MAR.

16It involves an independent reference translation, as well as a number of different, independently
generated post-edits.

17Sometimes also word stroke ration (WSR).

179

5 Learning Preferences from Human Interaction

Koehn and Germann [2014] present another method to estimate technical effort ś
character or word provenance, which can measure which characters or words had
to be actually typed and which ones were automatically proposed.

Finally, O’Brien [2011] proposes to measure cognitive effort through observation
of translators using eye tracking. Measurements of őxation time and counts can
give an estimate of the effort involved.

5.5.3 Measuring Quality

Final translation quality in CAT can be straight-forwardly measured if there are
independently created and validated reference translations available. However,
if these are not available, one has to resort to manual human judgments or to
automatic quality estimation techniques.

5.6 User Studies

User studies are commonplace in CAT for industry and research applications to
evaluate a setup in a realistic scenario, while having the ability to control the
parameters of the environment. There are however many difficulties that must be
considered when designing a user study: In comparative studies, where two or more
setups are to be compared, the main problem arises from the non-repeatability of
using the exact same variables in different conditions, i.e. it is not straight-forward
to present the same translator the same text under two different conditions, which
would be ideal for testing a hypothesis. But it is not expected to obtain an objective
result under this speciőcation. To overcome this inherent non-repeatability, one
can either try to select translators that are similar to one another, or use texts with
similar qualities, or experiment with introducing a very long pause between two
experiments. These options are often not practical, since translators with similar
backgrounds are often not available, similar but sufficiently differing text material
might be impossible to őnd, and long breaks are often just unpractical or leave
room for doubt in the results since it depends on the translators’ memories whether
the őndings are valid or not.

Another aspect of the difficulty of user studies is the associated cost, since
the results do not add any real value besides the gain in knowledge obtained by
analyzing the results. Also, the studies are usually carried out in a single shot,
leaving no room for error or variation in the experimental setup. A last point
concerning the cost, is that user studies usually compare a system’s performance
at one point in time, ignoring further system development, e.g. improvements the
baseline systems. When testing a new user interface, an additional problem arises
as there is usually a learning curve involved when changing the interface, which
has to be taken into account e.g. by having additional training sessions which also
adds to the overall costs.

180

5.6 User Studies

Concerning the used textual material, further issues arise when using publicly
available corpora. Another important question to answer is whether the provided
reference translations are veriőably of good quality, as it determines whether a
comparison is insightful or not. Furthermore, when comparing against third party
systems using publicly available corpora, it is important to verify whether or not
the third party system has the proposed text material in their training data.

Whether to use a standardized workŕow and work environments should also be
deőned when carrying out a user study. Using publicly available data, it is also
important to make sure that the reference translations are not available in generally
available search tools. A last point worth mentioning is the motivation of the study’s
participants, which may be suboptimal, given the nature of the testing environment.

Given these general observations, we review related published works on user
studies in CAT.

5.6.1 User Studies in Computer-Aided Translation

User studies are common place in CAT, e.g. for comparing post-editing or IAMT
with translation from scratch, or to traditional translation aids such as translation
memories (Guerberof [2009]; Arenas [2008], Flournoy and Duran [2009], Federico
et al. [2012] Zhechev [2012], Plitt and Masselot [2010], De Sousa et al. [2011],
inter-alia). We present a brief review of related works in what follows.

Arenas [2008] and Guerberof [2009] present a study on PE versus translation from
scratch and the use of a TM. Their experimental design includes nine professional
translators, and a single document which is statically split into three approximately
equal parts. These parts were translated either from scratch, with the help of a
TM, or via post-editing by all nine translators. This way each part is translated
three times under each translation condition. Standard statistical measures are
reported per part, averaged over translators’ outputs. This resembles a by-item
analysis, where the items are the document splits.

Langlais et al. [2000b] report a by-subject analysis in terms of efficiency of the
usage of an IAMT system.

In [Plitt and Masselot, 2010], the authors present a study on PE versus translation
from scratch. For the study, a test set including data from three domains is to be
translated into four target languages, with three distinct translators per language.
Each translator receives at least six translation jobs, translating from scratch and
post-editing data from each domain. In their analysis they opt for a by-subject
design, reporting average improvements in words per hour per translator, comparing
averages over different portions of text as well as from different domains.

Flournoy and Duran [2009] present a study on PE for two language pairs,
comparing PE productivity results to an anecdotal baseline of 2,500 words per

181

5 Learning Preferences from Human Interaction

working day (eight hours) of an łaveragež translator. Beaton and Contreras [2010]
also provide anecdotal evidence of productivity improvements when using PE
instead of translation from scratch.

Pouliquen et al. [2011] present a specialized user interface for patent translation,
and present a user study reporting human judgments of resulting translation quality.

Federico et al. [2012] describe a őeld test involving twelve professional translators,
translating data from two domains from English into German and Italian, where
each translator only translates data from a single domain. The translated materials
are only the same within each domain. Half of each document is translated without
MT suggestions, the other half with MT suggestions (in addition to TM matches),
which implies that each translation condition is observed on only 50% of the data,
and the same 50% overall translators. The results are presented as a by-subject
analysis, but without a comparison between domains.

In [Zhechev, 2012] a study on PE for nine language pairs is presented, with four
translators per language pair. The translation conditions, PE and translation from
scratch, are tested on pairs of similar documents, each translated either by PE or
from scratch by each translator. Results are presented by language pair, which
resembles a by-item analysis.

In a study comparing PE and translation from scratch, De Sousa et al. [2011]
and Aziz et al. [2012] report results of eleven non-professional translators. The
translators are divided into two groups, one group translates the őrst of two test
sets by translating from scratch, and the second test set through PE, while the
other group does the reverse. For PE four different MT systems are used, and the
group that is post-editing translates with every system, translating the same set
four times. Results are reported per MT system, comparing averages over test sets
and translators, as well as per translation condition (PE and from scratch), which
both can be characterized as a by-item analysis.

In one of the earliest studies comparing post-editing of MT to translation
from scratch, Orr and Small [1967] report results for Russian-to-English on non-
overlapping test sets. Much later, Macklovitch [2006] present a number of results
comparing an IAMT approach to translation from scratch, reporting improvements
in terms of raw words per hour measurements.

The authors of [Koehn, 2009] and [Koehn and Haddow, 2009] analyze the
translation outputs in a French-to-English translation task of ten non-professional
translators (őve native speakers of French, and őve native speakers of English), and
compare őve different translation conditions. A single shared test set is split into
őve blocks, and each block is translated under every translation condition, once by
a native speaker of French and once by a native speaker of English. Results are
reported by-subject, consequently comparing translations of different parts of the
data.

Läubli et al. [2013] present a user study, which aims to evaluate the efficiency of
PE in a realistic translation scenario, comparing traditional usage of a TM to PE.

182

5.6 User Studies

Their study is carried out with six non-professional translators, with only have
native language skills in the target language. The data used for the experiments is
divided into four parts. Each translator translates all the data, but the assignment
of which one is translated by PE or translation from scratch is random, while
making sure that 50% of the documents a translator receives are post-editing tasks.
Their analysis is done by comparing averaged measurements for post-editing and
translation from scratch for each document, rendering it similar to a by-item design.
They also report on a statistical analysis similar to [Green et al., 2013a], which
accounts for by-item and by-subject variations in a single model.

Koehn and Germann [2014] present a user study which aims to compare different
MT approaches and their impact on translation speed in a PE environment. In
their experiments, four bilingual non-professional translators are presented with
the output of four different MT systems for post-editing. A single test set is
translated with all four systems, and each translator translates the full document
once, seeing a randomly chosen MT output for each source segment to post-edit.
This corresponds to a random split of the test data with a random assignment to
translators per MT system. The variable of interest is the varying performance by
using the different MT systems. Their results are either averaged over translators
for each MT system, or per translator over the whole document including the
different MT systems’ suggestions. This setup can be considered as a by-subject
analysis in both cases. The authors also provide results of signiőcance tests for the
comparison between MT systems, once global and once per translator.

The study of Gaspari et al. [2014] compares PE to translation from scratch,
for two language pairs, and in four translation directions. For each translation
direction, the authors selected a distinct test set, which was translated by two
translators, one translating one half from scratch, and the other half by post-editing.
The second translator does it in the reversed order of the őrst translator. Results
are reported by language pair, i.e. by-item.

Sturgeon and Lee [2015] present a study comparing an IAMT approach to post-
editing. Their study involves 24 non-professional translators, translating data from
two distinct domains. For each domain a single test set is used, which is translated
by twelve translators using the IAMT approach, and the other twelve translate
using traditional PE. Their results are summarized in a by-item analysis, reporting
averaged results for each test set and translation condition.

Bentivogli et al. [2016b] present a user study comparing several MT paradigms.
In the study, offline generated outputs of all systems are post-edited, and HTER
and BLEU scores (against independent references) for the MT outputs are reported.

Garcia [2011] present a total of three experiments, summarizing earlier results
[Garcia, 2010]. All experiments use a distinct test set, which is split into two parts
Ð one part translated from scratch, and the other part translated with via PE.
Each part is translated under the same translation condition an equal number of
times. The őrst two experiments each use translations of 14 translators in training,

183

5 Learning Preferences from Human Interaction

28 in total. The third experiment employs 21 translators. The authors perform
a simpliőed by-item analysis, reporting an averages over translators. They also
perform a statistical hypothesis test for the independent variables translation speed
and -quality.

Sanchis-Trilles et al. [2014] present a őeld test with nine translators, comparing
three translation conditions (using various CAT aids). Three data sets are used in
the study, which are further split into another three parts. Each translator gets to
edit every part of each document with a different translation aid, such that every
translator uses each aid three times, and every part of a document is translated
with each of the aids three times by different translators. The authors present
results averaged per translation condition, by-subject and -item.

Tatsumi [2010] presents a long study analyzing PE effort in English-to-Japanese
translation. To this end, amongst other things, a number of multiple linear regres-
sion models are presented, including various source-side characteristics, number of
edit operations, and translators as őxed effects. Post-editing time is used as main
dependent variable. The analysis spans a single test set, all nine participants use
PE for translation.18

Scheepers and Schulz [2016] report a user study on an IAMT approach with preőx
completion. Four professional translators and two novice translators translate two
sets of three documents, one set with suggestions from a monolingual language
model, and the other set with suggestions from a NMT system. Their results are
analyzed using a Bayesian linear regression model.

Castilho et al. [2017] present results of a user study on NMT versus SMT post-
editing, comparing measures of technical effort for post-edits generated by the same
translator for the same text.

Green et al. [2013a] present a user study, comparing PE to translation from
scratch on data for three language pairs. The data for all language pairs consists
of four paragraphs of coherent text (within each paragraph), and the assignment
to translation condition is randomized per paragraph. 16 translators are employed
per language pair, and all of them translate the same source segments. For anal-
ysis of the data, a linear mixed-effects model is used, with time and quality as
dependent variables, and subjects as well as items (the source segments) as random
effects, including the translation condition as őxed effect which acts as the primary
independent variable. Green et al. [2014b] and Green et al. [2014c] present similar
studies for contrasting PE to an IAMT approaches.

Our review shows that a wide range of experimental designs were used in CAT
research, which are mostly restricted to either by-item or by-subjects analyses with
the notable exceptions of [Tatsumi, 2010], [Scheepers and Schulz, 2016], [Green
et al., 2013a], [Green et al., 2014b] and [Läubli et al., 2013], the latter three works

18The study also includes a brief comparison in terms of speed of post-editing to TM matches.

184

5.6 User Studies

establishing linear mixed-effects models for analysis of CAT user studies. These
statistical models enable to account for by-item and by-subject variance [Clark,
1973; Forster and Dickinson, 1976]. Otherwise, only Sanchis-Trilles et al. [2014]’s
experimental design includes redundancy in translation condition by item and
subject. Other studies report simple averages over items or subjects, instead of
by-item and by-subject variance analyses [Baayen, 2008] or a mixed-effects analysis.
The simpler methods provide no means to assert generalization beyond the sample
at hand.

5.6.2 Studies on Adaptation

The majority of research on adaptation in CAT resorts to simulated feedback using
offline generated references. This is due to the many issues that arise when carrying
out a study with real user feedback, which can be infeasible when developing a
new adaptation approach. While this is in general a valid approach, it has the
downside that there is no clear relation between the suggested translations and the
simulated post-edits. For example, the distinction between cognitive and technical
effort is hard to assess with simulations.

After the őrst approach to adaptation of PBMT described by Nepveu et al. [2004],
many adaptation approaches for the PBMT approach were developed [Martínez-
Gómez et al., 2012; Ortiz-Martínez, 2016; Arun and Koehn, 2007; Hardt and Elming,
2010; Gao et al., 2011; Levenberg et al., 2010] (inter-alia), often focusing on tuning
[Wuebker et al., 2015a; Mathur et al., 2013; Mathur and Cettolo, 2014; Cettolo
et al., 2013]. In most of these works results on regular MT metrics or simulated
experiments are reported. Some papers also show learning curves for the proposed
methods [Mathur et al., 2014], inter-alia. Other approaches use reranking methods
[Cesa-Bianchi et al., 2008; Martínez-Gómez et al., 2011] (inter-alia). Adaptation
methods developed for hierarchical phrase-based systems are more rare [Denkowski
et al., 2014a], inter-alia. Adaptation in NMT was also primarily explored with
simulations [Turchi et al., 2017; Peris et al., 2017a].

Some studies with a focus on CAT also report results using real post-edits,
generated from the same or similar system that is used during online adaptation
[Bertoldi et al., 2014; Wäschle et al., 2013; Cettolo et al., 2013]. Most of these
evaluations report MT metrics, comparing MT outputs to reference translations.
Green et al. [2014c] also report on incremental re-tuning [Forcada et al., 2017]
towards HTER [Denkowski and Lavie, 2010], using post-edits that were produced
using a baseline system.

Most work on IAMT has also been conőned to simulations, including systems
using NMT [Knowles and Koehn, 2016; Peris et al., 2017b]. However, some studies
do actually try to simulate user inputs to report on metrics such as KSMR [Ortiz-
Martínez et al., 2010; López-Salcedo et al., 2012; Wuebker et al., 2016].

185

5 Learning Preferences from Human Interaction

One of the őrst studies evaluating adaptation by a user study, is presented by
Alabau et al. [2014], who seek to evaluate adaptation approaches compared to
a non-adapted system in an IAMT setup. The study involves three professional
translators and one non-professional translator. In a őrst evaluation, a single
translator translates comparable source texts in different translation conditions. In
the second evaluation, three professional translators translate the same text, two
using an adaptive system, while the third one uses a system without adaptation.
The results are reported as per-translator timing results, showing that in the second
experiment less keystrokes were used when translators made use of the adaptive
system. The őrst experiment shows improved throughput.

The online adaptation approach of Denkowski et al. [2014a] for the Hiero MT
paradigm is evaluated in a user study reported in [Denkowski et al., 2014b]19, Five
translators in training had to translate four texts, two by using an adapted system,
and two by using a static baseline system, such that every text is translated more
than once in any translation condition. Results are reported as aggregated HTER
scores for the baseline and adapted system over full the full set. The authors of
the study report a reduction in HTER of about two percentage points, as well as
improved human judgment ratings when using the adapted system. In a study that
used the same general approach, Lacruz et al. [2014], evaluate with őve translators
in training whether online adaptation can passively reduce cognitive effort, as
measured by the number of pauses divided by the number of words20, in addition
to HTER. The study includes no comparison to a non-adapted system.

In a user study including batch and online adaptation presented by Bentivogli
et al. [2016a], the authors propose an experimental setup that enables a by-item
and by-subject analysis similar to e.g. Green et al. [2014c], including an analysis
with linear mixed-effects models. Their approach is evaluated with 16 translators,
each translating 820 segments in total in either of two language pairs. This includes
368 segments used for familiarization with the interface (the outputs are however
used for adaptation of the later test systems for the adaptive case). In contrast
to previous work on CAT evaluation, instead of testing translation conditions
with the same translators on different data for each translation condition, each
translator translates the same text twice, once for each translation condition. The
authors propose a one month gap between the two experiments. Their results show
signiőcant improvements in post-editing effort, as measured in HTER, and also
signiőcant improvements of the quality of the original MT suggestions, as measured
in BLEU, against independent reference translations.

19Also published in [Denkowski, 2015].
20Pauses to word ration (PWR).

186

5.6 User Studies

5.6.3 Evaluation of User Studies

Evaluation of novel approaches in CAT suffers from the inherent non-repeatability
of experiments, since the same translator can hardly be exposed to the same text
under differing translation conditions to directly test the impact of an innovation
on translation performance.

Additionally, large variability has been observed in both textual materials, as
well as translators [Koponen, 2013; Koehn and Germann, 2014], which is commonly
ignored when reporting (averaged) by-item or by-subject measurements, hiding
the underlying variance in a single value. This variability is however a natural
phenomenon, since every subset of text or translators can naturally only be small
samples from very large distributions. This is why these factors Ð language
material and translators Ð should be modeled as random effects, and not as őxed
effects, e.g. estimating linear regression models. This is the classical language-as-
a-fixed-effect-fallacy [Clark, 1973; Coleman, 1964], which, when ignored, can lead
result in Type I errors, asserting statistical signiőcance of differences when there is
none (rejection of a true null hypothesis21).

A common remedy to this problem are mixed models as introduced by Laird and
Ware [1982], combining őxed and random effects in a mixed model for improved
variance analysis [Baayen et al., 2008; Judd et al., 2012].

Linear mixed-effects models, as used in our work, can be written similar to
ordinary linear regression models:22

yij = b0 +

p
∑

k=1

bkxijk + vi0 +

q
∑

l=1

vilzijl + εij , (5.4)

where (yij) = Y ∈ R
n×mi is a response matrix for n subjects and mi responses

per subject23 i, b0 ∈ R is the global őxed intercept, and vi0
iid
∼N(0, σ2

0) are per-subject

random intercepts. εij
iid
∼ N(0, σ2

ε) are per-item and per-subject Gaussian24 error
terms. The p őxed-, and q random effects, measured per-item j and subject i, each
have associated slopes. While the őxed slopes bk ∈ R are shared between subjects
and items, the random slopes vil

iid
∼ N(0, σ2

l) are estimated per subject. Finally,
xijk ∈ R and zijl ∈ R are the measurements for őxed- and random predictors
respectively.

21Type II errors being the failure to reject a false null hypothesis, i.e. declining a significant
difference.

22Presentation here largely based on [Helwig, 2017].
23Note that the number of measurements may be different per subject, which can be adjusted by

padding with 0.
24Note that generalized linear mixed-effects models permit other families of distributions [Lo and

Andrews, 2015].

187

5 Learning Preferences from Human Interaction

This model can also be written more compactly in matrix form for each subject
i:

yi = Xib+ Zivi + εi, (5.5)

where Xi, and Zi are the őxed- and random effects design matrices respectively,
b and vi the őxed- and random-effects vectors, and εi the error vector. Per-subject
responses are collected in the vector yi.

Linear mixed-effects models can be estimated using generalized least squares or
maximum likelihood estimation (MLE). For our work, and also following Bentivogli
et al. [2016a], we use the implementation described in [Bates et al., 2014] which
uses MLE.

5.7 User Study with the Graphical Interface

We performed a user study to evaluate the effectiveness of the proposed adaptation
scheme and the graphical interface. In this őrst experiment, we opted for a by-
subject and by-item analysis, which we carry out using a linear mixed-effects
model.

For the study, 19 students were recruited, six studying computer science and/or
computational linguistics, and the remaining 13 being translators in training, all
associated with the Heidelberg University, Germany. The group of participants
had a diverse set of mother-tongues, nine students are German, the others are
native Italian- (seven), Spanish-, Arabic- or Russian (each one) speakers. This data
was collected anonymized and independently, which is why there is no mapping
between mother tongue and őeld of study. All students are ŕuent in written and
spoken German, according to a standardized test [Jung, 1995] (minimum level
DSH-2), as required for being enrolled in the university.

The experiment was conducted in separate 90 minute sessions, and took place
in a controlled environment in a computer pool. In each session at least one
supervisor was present to provide an exam-like environment. Access to the internet
was available, including online dictionaries and reference material. In some isolated
cases, the time limit of 90 minutes was slightly extended in favor of őnishing the
assigned task.

5.7.1 Data Selection & Machine Translation Model

For this study we use patent data [Wäschle and Riezler, 2012b,a], since it allows
to build SMT models from comparatively small data, which however provide
sufficient baseline translation quality on in-domain data, which is important for
our PE task, since we employ non-professional translators. Additionally, the data
is diverse, covering a wide range of topics. However, since our participants are

188

5.7 User Study with the Graphical Interface

Sheathed element glow plug

A sheathed element glow plug (1) is to be placed inside a chamber (3) of an internal combus-
tion engine.

The sheathed element glow plug (1) comprises a heating body (2) that has a glow tube (6)
connected to a housing (4).

Figure 5.4: Title (underlined) and excerpt containing two sentences of the abstract
of patent WO-2007000372-A1.

Sheathed-element glow plug

A sheathed-element glow plug (1) serves for arrangement in a chamber of an internal com-
bustion engine.

The sheathed-element glow plug comprises a heating body (2) which has a glow tube (5)
and a heating coil (8) which is arranged in the glow tube (5).

Figure 5.5: Title and excerpt containing two sentences of the abstract of patent
WO-2007031371-A1.

neither professional translators, nor familiar with patents, patent translation, or
any subject matter, we restrict our experiments to patent titles and abstracts,
since the other sections (descriptions and claims), can contain overly complicated
segments which partially follow standardized language restrictions. Examples for
this type of data are depicted in Figures 5.4 and 5.5.

To obtain a clean split between training and testing data, we őrst split the data
by year, and then by its family patent identiőer25. Practically, we select data from
1995 to 2005 for training, data from 2006 as development data, and data from the
years 2007 and 2008 as testing data. We remove all data from development and
training sets that share a family id from any patent used in the test data. We
repeat this process for development and training data, removing data from training
if it shares a family identiőer with any patent used in the development data. The
resulting training set contains about 350K segments.

In addition to the parallel data, there are about 16M target side segments avail-
able for language model training.

25This identifier groups related patents which are filed in different countries, e.g. patent applica-
tions by the same entity or for the same inventions.

189

5 Learning Preferences from Human Interaction

The test data is split into groups of about őve documents to obtain translation
tasks of similar size for our experiments. The initial 23,048 documents (a document
being an abstract with corresponding title) in the test data are further reduced
by to 3,751 documents by selecting only those documents, where each source
segment in the abstract has at most 45 tokens (in the fully pre-processed version).
From these documents, 2,075 are discarded since they contain less than four total
segments, resulting in the őnal set of 1,676 documents.

These documents are grouped into translation tasks of about 500 words26 by
the following procedure: First a full cosine similarity matrix over all documents is
built, using a bag-of-words approach with tf-idf values [Sparck Jones, 1972] and
applying stop word őltering [Singhal et al., 2001]. Each document (in random
order) is then grouped with similar documents until the limit of 500 words is
reached, with minimum and maximum similarities of 0.05 and 0.95, while preferring
more similar documents. This process is executed until all documents are used,
or the constraints cannot be satisőed anymore. Most groups contain three to őve
documents. This process is carried out to ensure that a translation task consists
of similar sentences, to be able exploit similarities during training. Note that this
process in entirely carried out on the source-side, which means a similar approach
could be used in practice, e.g. assigning similar projects to the same translators in
a corporate environment.

We built hierarchical phrase-based translation models for English-to-German
from the training data using truecasing, where the őrst token of each segment is
normalized to its most common form [Lita et al., 2003], to avoid having to employ
a separate re-casing system. The translation model is built using all available
parallel training data. A 5-gram language model is trained using all of the available
German data. The adaptive Bayesian language model is trained with 5% subsample
of the full monolingual data, since training time is otherwise infeasible, even when
using only trigrams.

We use Dtrain to tune the weights of the Sparse feature set on the available
development data. The development data contains 46,853 segments Ð we use a
random sample of 2,000 segments for development testing, and the remaining 44,853
segments for tuning. We employ our IterMixSelSGD algorithm, with shards
containing about 2,000 segments, in conjunction with the random re-sharding
technique. We perform four tuning runs to account for optimizer instability.
Additionally, since we want to prevent too harsh changes to common features, we
implemented a distributed variant of the ADADELTA per-coordinate learning rate
method Zeiler [2012]: After each epoch, each shard returns a vector of learning
rates, as well as its current weight vector. While weights undergo the ℓ1/ℓ2 feature

26Taking a conservative words per hour value of about 333 words per hour as basis.

190

5.7 User Study with the Graphical Interface

selection (selecting 100K features), the learning rates are simply averaged, and
distributed together with the reduced weight vector for the next training epoch.

The ADADELTA method can be deőned as follows for a single parameter k
of the weights w: After computing the gradient ∇, we őrst update its squared
expectation (starting from 0 for i = 0) by accumulating the gradient:

E[∇2
k](i) = ρE[∇2

k](i−1) + (1− ρ)∇2
k,(i), (5.6)

∇k,(i) being the kth component of the ith gradient during training.
We then compute the actual update as:

∆wk,(i) ← −

√

E[∆w2
k](i−1) + ϵ

√

E[∇2
k](i) + ϵ

∇k,(i), (5.7)

and accumulate the actual updates:

E[∆w2
k](i) ← ρE[∆w2

k](i−1) + (1− ρ)∆w2
k,(i). (5.8)

Finally, update the weights by:

wk,(i+1) ← wk,(i) +∆wk,(i). (5.9)

We employ the margin perceptron with a margin 1.0, and do not need to set a
manual learning rate due to the use of ADADELTA27. Each run uses 16 epochs,
and as a last step the weight vectors of all epochs are averaged, as well as the
associated per-coordinate learning rates. Due to its size data is split into 42 shards.
We obtain a mean score of 33.0 ±0.1 on the development test data, repeating the
tuning procedure three times. For use in our experiments we use the best run
which had a development testing score of 33.1. We also performed three Mert

runs on the Dense feature set using the same data, resulting in a mean score of
31.2 (maximum 31.3, standard deviation 0.1).

The initial weights and learning rates for the additional features28 of the transla-
tion model are set as follows: Their weight is initially set to 1.0, and the learning
rate is set to the mean rate over all features. The learning rates for the associated
sparse features of the extended rule set, are set to the median rate for the respective
feature group (rule identiőers, rule bigrams, and rule shapes). The weights and
learning rates for the adaptive language model are learned in a downstream step by
using Dtrain on a smaller held-out data set, applying the simulated user feedback
scheme.
27The hyperparameters of ADADELTA are set to the values suggested in [Zeiler, 2012]: ρ = (0.95)

for the decay rate and ϵ = 10−6.
28The additional features are: a feature for known rules, a feature for out-of-vocabulary fixing

rules, and a feature for new rules.

191

5 Learning Preferences from Human Interaction

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

T
im

e/
P

E
C

ha
ra

ct
er

s
[m

s]

Session No.

Figure 5.6: Learning curves for eight translators using the graphical interface in
őve consecutive sessions.

5.7.2 Experimental Design

In our experiment, we seek to compare an adaptive MT system providing initial
translation suggestions for post-editing to a non-adaptive MT system for the same
task.

We carry out őve 90 minute sessions, each on a different day, using the graphical
interface for post-editing. The őrst two sessions are reserved for familiarizing
the users to the interface and translation material. A learning curve, illustrating
the learning process of a subset of the translators is shown in Figure 5.6, clearly
demonstrating a learning effect, which levels out after the second session. Note
that, since each translator worked on different texts in each session, the data
points in this plot are not directly comparable. In the following three sessions, we
carry out a single experiment without adaptation for establishing a baseline, and
two sessions with adaptation for comparison. The participants were not informed
whether the MT system was adapting to their inputs or not. In each session, all
translators receive a single translation task as described above. Within a session,
each document is assigned to two users if possible, which means it is translated
under the same translation condition. The supervisors made sure that participants
working on the same document did not sit next to each other. Every participant
starts in every session from the same baseline model.

Thus we were able to collect 978 per-sentence measurements, 312 without

192

5.7 User Study with the Graphical Interface

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

∆
%

B
L
E

U

Segment No.

Figure 5.7: Cumulative difference in per-sentence %BLEU between adapted and
the baseline system for both adaptive sessions.

adaptation and 666 with adaptation.

5.7.3 Adaptation: Sanity Check

Due to the time constraint of 90 minutes per session, it is not immediately clear
that a system is able to learn something meaningful with the very little amount of
the data it receives. To show that the adaptive system can learn effectively in this
setup, we compare the MT outputs of the adapted systems to the outputs of the
non-adapted vanilla baseline system for a single session, comparing human-targeted
MT metrics sentence-wise and on the corpus-level.

In Figure 5.7, we show a moving sum of sentence-level differences in the (per-
sentence) %BLEU scores of the adapted and the vanilla MT systems, calculating
the score against the post-edit as reference, i.e. per-sentence HBLEU29. In the plot
it is apparent that for most sessions, the curve grows in positive direction, which
corresponds to an improvement over the non-adapted system. We additionally
calculated the difference in corpus-level MT metrics, showing improvements in most
cases. These results are depicted in Table 5.2. Again the repetition rates appear to
be a reference point for adaptation performance, with one clear exception (session
4), which has a low rate (below average) but highly improved deltas.

29Now referred to as HBLEU+1.

193

5 Learning Preferences from Human Interaction

Session # ∆ %BLEU ∆ %TER %RR

1 +8.8 −3.0 26.9
2 +3.2 −3.7 25.5
3 −0.3 +2.7 14.8
4 +9.8 −7.0 12.7
5 +2.4 −0.4 54.9
6 +8.0 −2.0 28.0
7 +14.7 −7.4 26.7
8 +12.8 −4.8 37.0
9 −1.6 +2.0 20.1
10 +5.9 −3.3 27.9
11 −0.8 −0.7 26.5
12 +21.2 −16.0 26.7
13 +1.8 −3.9 27.9
14 +0.3 +3.3 27.3
15 +0.5 +0.6 31.1
16 +1.7 −0.0 31.0

Avg. +5.5 −2.7 27.8

Table 5.2: Differences of adapted and vanilla systems in corpus-level MT metrics
for all sessions using adaptive MT systems. Averages are depicted in the
last row.

194

5.7 User Study with the Graphical Interface

Response var. est. Intercept est. ∆ Signiőcance

HTER [%] 51.6± 2.8 −5.3± 1.9 p < 0.01, χ2(1) = 7.8741
HBLEU+1 [%] 43.4± 3.0 +6.8± 2.0 p < 0.001, χ2(1) = 11.748

norm. time [ms] 1319± 84 −118± 67 p < 0.1 χ2(1) = 3.0688
KSMR [%] 80.1± 11.5 +7.5± 8.0 Ð

TER/MT [%] 70.0± 2.1 +8.3± 2.1 p < 0.001 χ2(1) = 15.344
BLEU+1/MT [%] 31.1± 1.4 −3.8± 1.4 p < 0.01 χ2(1) = 7.234

TER/PE [%] 48.0± 3.7 +5.1± 2.3 p < 0.05 χ2(1) = 5.1258
BLEU+1/PE [%] 45.6± 2.9 −2.2± 1.9 Ð

Table 5.3: Results of the estimated linear mixed-effects models with data from
the experiments with the graphical user interface. Table adapted from
[Simianer et al., 2016].

Given these results, we may conclude that the adaptation approach seems to be
capable to learn quickly from user inputs, which is remarkable, since the maximum
number of segments used for adaptation was 25 in this set of experiments.

5.7.4 Adaptation: Batch Analysis

Our main statistical analysis of the experiment is carried out by learning a linear
mixed-effects model as described in Section 5.6.3. Apart from the translation
condition, we use a binary indicator denoting segments that are translated by a
native German speaker, and a source-length indicator with three equally sized
levels30 as őxed effects (independent variables). Random effects, with random
intercepts, are identiőers for user and for source segment. The user id ranges
over a number of segments, and is observed in both translation conditions. The
segment identiőer is however always observed in one translation condition only,
either adaptive or non-adaptive, which is why we cannot implement a maximum
random effects structure [Barr et al., 2013], as proposed by Green et al. [2014c], i.e.
adding random slopes for all random effects.

Dependent variables (or response variables) include human-targeted segment-level
MT metrics, HBLEU+1 and HTER, as well as KSMR and time, both normalized
by total post-edited characters. We also include segment-level MT metrics with
respect to the original reference translation for MT suggestions and őnal post-edits.

A summary of the results is depicted in Table 5.3, reporting estimated intercepts,
slopes and p-values. Differences estimated for the response variables contrasting

30The levels are 1-15, 16-30, and 31-45.

195

5 Learning Preferences from Human Interaction

non-adaptive to adaptive systems are given in the ∆ column, along with intercepts
and standard deviations. Signiőcance is tested with likelihood ratio tests of the full
model against the model without independent variable of interest, and p-values are
reported, if p ≤ 0.1. The estimates for HTER and HBLEU+1 conőrm the őndings
of the previous section, showing a signiőcant harmonization between translator
and MT system for both BLEU and TER. User time per character is however
only marginally affected by this improvement, as well as KSMR (which actually
increases for the adapted condition), which could be due to the small sample size.

Interestingly, we őnd large, and signiőcant reductions in translation quality of
MT outputs and the őnal post-edits with respect to the reference translations.
While this is an unfortunate result, it can be readily explained by the fact that
the difficulty of the texts is very high, since patents cover very technical content,
which usually requires specially trained translators which can comprehend the
technical context. By adapting the MT to the outputs of our users, the initial
suggestions are closer to what the user had in mind. We suspect however that
the post-edits are not of high quality due to the discussed shortcomings in our
setting. The participants furthermore could not see őgures in the interface which
were referenced in the text, which could have further complicated the translation.

By analyzing the őxed effects of the model with time as dependent variable, we
can conőrm a common őnding in PE user studies Ð the time needed for post-editing
signiőcantly increases with source segment length (but only marginally: p < 0.1
χ2(1) = 5.868), resulting in an offset of +90 ms (±75), for lengths between 16 and
30, and +198 ±82 for lengths ≥ 31.

The őxed effect for German mother tongue is non-surprisingly signiőcant (p < 0.01
χ2(1) = 7.0329) with respect to translation time, +266 ms ±92 per character for
non-native translators.

5.7.5 Adaptation: Case Study

In this section we present a concrete example of the adaptation process, and how
it enhances the post-editing experience.

In a translation task, a user was őrst confronted with a text from a patent őled
as WO-2007059805-A1, starting with the title:

Coating device comprising flowing coating material for smooth or structured surfaces

The MT system produced the following translation suggestion:

Beschichtungsvorrichtung mit strömenden Beschichtungsmaterial zur glatten oder
strukturierten Oberflächen

196

5.7 User Study with the Graphical Interface

The term strömenden is an inept choice for the word flowing in the source, and also
in the wrong case (genitive instead of possessive dative). The translator accordingly
post-edits the suggestion to end up with:

Beschichtungsvorrichtung mit fließfähigem Beschichtungsmaterial für glatte oder
strukturierte Oberflächen

The participant translates flowing into fließfähigem, almost producing the reference
translation:

Beschichtungsanlage mit fließfähigem Beschichtungsmaterial für glatte oder struk-
turierte Oberflächen

The translation system could not produce the correct translation, since there was
no rule translating flowing to fließfähigem. The adapted system however immediately
picks up the rule łX→ flowing | fließfähigemž, and also associates a positive weight
of about +0.5 to it, since the system could detect this particular change. The
language model now also includes N -grams including this target term.

The translator is later also assigned to translate patent WO-2007059967-A1,
where the title is:

Coating device comprising a flowing coating material

Which is initially translated as:

Beschichtungsvorrichtung mit einem fließfähigem Beschichtungsmaterial

This is almost correct, but fließfähigem needs to be corrected to the proper case:
fließfähigen31. Accordingly the weight of the previously learned rule is adjusted to
about +0.1.

This example shows that immediate adaptation can be useful, but also that the
adaptation will possibly work best if all models are updated at once.

31In an NMT system based on sub-word units, there is a good chance that this will corrected
automatically, since the original word could be split into several sub-words. Additionally,
since more conditioning history is taken into account, phenomena like these can be handled
effectively.

197

5 Learning Preferences from Human Interaction

Client Server Update? Update

Post-process
1. Convert subwords
2. Case MT output
3. De-tokenize MT output

MT engine
Needs: Current model
Returns: Translation

(1) Req. translation (+Payload) (2)

(3b) No (3a’)

(3a) Yes

(4)

(5)

Figure 5.8: Simpliőed server-client architecture which is used for the NMT user
study.

5.8 User Study with Neural Machine Translation

Neural machine translation, as described in 2.2.6, is ideally suited for use in
CAT, and especially for online adaptation applications, for a number of reasons:
First, since post-editing time is greatly affected by baseline translation quality, the
signiőcant improvement over SMT as reported in numerous publications [Luong
and Manning, 2015; Bentivogli et al., 2016b; Wu et al., 2016; Bojar et al., 2017;
Shterionov et al., 2017] (inter-alia), presents a valuable advantage over earlier ap-
proaches32. That the improvement in baseline quality carries over to improvements
in CAT has been conőrmed by Castilho et al. [2017] and Bentivogli et al. [2016b]
for post-editing tasks, at least to some extent.

Neural machine translation can also be trivially extended to perform preőx-
decoding, as used in preőx completion approaches in IAMT [Wuebker et al., 2016;
Knowles and Koehn, 2016; Peris et al., 2017b; Scheepers and Schulz, 2016], which
before required complex mapping in the SMT approaches, see e.g. [Ortiz-Martínez
et al., 2009] or [Spence Green and Manning, 2014].

Lastly, online adaptation by online learning is also trivial to implement in NMT,
since the original training method is often already using an online learning algo-
rithm, e.g. mini-batch stochastic gradient descent. A further advantage is that
only a single model has to be updated, instead log-linear-, reordering-, language-
and translation models in separately. Several studies showed large improvements
by this general approach [Turchi et al., 2017; Peris et al., 2017a]. Also, by using
sub-words [Sennrich et al., 2015; Wu et al., 2016] as minimal translation units

32Although some report that with improved quality it becomes harder to spot errors, in turn
hindering the post-editing process somewhat.

198

5.8 User Study with Neural Machine Translation

(including the full source- and target-side vocabularies), reachability is almost33

certain, which implies that new vocabulary can be learned rapidly with simple
online learning, without any modiőcation of the learning algorithm.

In the following we present a user study that tests our approach of online
adaptation of an NMT system to post-edited translations, with a similar design as
the previously discussed study on immediate adaptation of a hierarchical phase-
based machine translation system.

5.8.1 Adaptation by Fine-Tuning

Fine tuning of neural network models, similar to the tuning process in SMT, aims
to adapt an existing model to a new domain or data set. Therefore, instead of
randomly initializing the parameters of the model, the parameters are set to the
result of a previous training process, possibly on a different data set. This approach
is similar to transfer learning [Yosinski et al., 2014; Dauphin et al., 2012; Hinton
and Salakhutdinov, 2006]. Fine-tuning can be readily applied to an encoder-decoder
(cf. Section 2.2.6) based NMT system [Chu et al., 2017; Freitag and Al-Onaizan,
2016].

For the application of online adaptation to a stream of post-edits the scheme
shown in Figure 14 can be directly used, with the only exception that instead
of reranking, a single global model Mg is continuously adapted. In the adapta-
tion experiments reported by Turchi et al. [2017], this is the most effective approach.

In our approach, online adaptation is performed as a single update step after a
post-edit is received:

θ ← θ − η∇f,e, (5.10)

where ∇f,e is the gradient with respect to the model’s parameters θ for a mini-
batch containing only the source and target sequences f and e. The target sequence
is the sub-word representation of the respective post-edit.

While Peris et al. [2017a] use the same general approach, they employ a passive-
aggressive update instead of plain gradient descent.

5.8.2 Experimental Design

For the user study, we employ the textual interface as shown in Figure 5.3, without
modiőcation, and also use the same general environment as in the previous study
with the exception that internet access was restricted, only allowing access to a
number of pre-deőned websites in order to lower supervision overhead.

33Unknown characters still pose problems for systems using sub-words.

199

5 Learning Preferences from Human Interaction

We conducted nine sessions in total, each about 90 minutes long. Some sessions
took place in succession, in these cases we provided 20 minute breaks between
sessions. Two of these sessions were used to familiarize the participants with the
post-editing task and the user interface. The translation tasks distributed in each
session are a random selection of groups of documents as described in Section
5.7.1, translating from English-to-German, following the previous study. We also
distribute the data to two participants, but in contrast to the previous study, this
time in different translation conditions, i.e. once with an adaptive model and once
with a static model. The users did not know whether the system was adapting to
their outputs or not. Participants working on the same documents could not sit
next to each other.

29 master-level students of translation studies, associated with the Heidelberg
University, Germany, were recruited for the study on a voluntary basis. We did
not collect any additional personal data. None of the students took part in the
previously presented study.

5.8.2.1 Background Model

The adaptive NMT system is based on an implementation [Neubig, 2015] of the
RNN-based encoder-decoder approach with attention mechanism [Bahdanau et al.,
2014], based on the neural network toolkit described in [Neubig et al., 2017]. Instead
of a feed-forward network as described in [Bahdanau et al., 2014], we use a simple
dot product to calculate attention scores, as described in [Neubig, 2017, 2016],
and employ attention feeding as described by [Luong and Manning, 2015]. As
recurrent units, we use long short-term memory units (LSTM) [Hochreiter and
Schmidhuber, 1997], as suggested by [Britz et al., 2017], with two layers for encoder
and decoder, and a hidden size of 256. Source and target word embedding matrices
have 128× 10, 000 parameters each, using separate vocabularies with 10K entries
for both source and target language. For training we use the optimizer described by
Kingma and Ba [2014] (Adam), with an initial learning rate of 10−3 and otherwise
the algorithm’s default parameters. For regularization we apply dropout [Srivastava
et al., 2014] with probability 0.5.

We opted for a two-stage training, őrst training on a concatenation of of the
previously used Nc and Ep corpora, which add up to about 2M segments. Training
was performed until no further improvement could be observed on held-out data,
selecting an earlier epoch for early stopping.

In a őne tuning step, we trained on the same 350K parallel segments as used in the
previous study. From this truecased and tokenized data we also build vocabularies of
sub-word units using the approach of [Sennrich et al., 2015]. Separate vocabularies
are built for source and target languages with a limit of 10 K entries. Both training
corpora use the same pre-processing.

The parameters for online adaptation are adjusted using the development data

200

5.8 User Study with Neural Machine Translation

Response var. est. Intercept est. ∆ Signiőcance

HTER [%] 31.1± 1.1 −4.8± 0.9 p < 0.001 χ2(1) = 18.902
HBLEU+1 [%] 57.2± 1.2 +5.9± 1.1 p < 0.001 χ2(1) = 19.08

norm. time [ms] 598± 26 −44± 29 Ð
KSMR [%] 44.0± 2.7 −7.8± 1.5 p < 0.001 χ2(1) = 17.513

TER/MT [%] 52.9± 0.6 −0.8± 0.4 p < 0.1 χ2(1) = 3.2446
BLEU+1/MT [%] 33.7± 0.5 +1.5± 0.3 p < 0.01 χ2(1) = 9.3528

TER/PE [%] 49.6± 0.8 −0.5± 0.7 Ð
BLEU+1/PE [%] 36.9± 0.8 +0.9± 0.7 Ð

Table 5.4: Results of the estimated linear mixed-effects model with data from the
experiments with the neural MT system.

of the previous study. We halve dropout to 0.25, use SGD instead of Adam, and
use a learning rate of 0.05. For inference we use a beam size of 10, a word penalty
of 0.85 and an unknown penalty of 0.25 [Neubig, 2016].

Using the NMT system vastly reduces the complexity of the overall architecture
as depicted in Figure 5.8.

5.8.3 Analysis

For this analysis we build linear mixed-effects models with maximum random
effects structure following Barr et al. [2013]. The data consists of 3,212 per-
sentence measurements for a total of 1,606 source segments. Each source segment
is thus translated twice Ð once by a translator using an adaptive MT system, and
once by a different translator using a non-adaptive system. The models incorporate
a single őxed effect Ð the translation condition, which has the levels adaptive and
non-adaptive. Random effects are the segment identiőer, for which all levels are
observed under both translation conditions, and user identiőer, for which also all
levels are observed under both translation conditions. For the maximum random
effects structure the models include random slopes for translation condition, and
random intercepts for both user identiőer and segment identiőer.

Results with models with varying response variables are depicted in Table
5.4. Differences estimated for the response variables contrasting non-adaptive to
adaptive systems are given in the ∆ column, along with intercepts and standard
deviations. Signiőcance is tested with likelihood ratio tests of the full model against
the model without independent variable of interest, and p-values are reported, if

201

5 Learning Preferences from Human Interaction

p ≤ 0.1. As in the previous study, human-targeted MT metrics are greatly and
signiőcantly improved using adaptation. Time (normalized by characters of the
őnal post-edit), is also again improved, but not signiőcantly34. The measurement
for KSMR is signiőcantly better for the adapted system, which however did not
translate to signiőcant speed improvements. Machine translation evaluation metrics
with respect to the independent reference translations give a mixed result Ð while
the MT outputs seem to converge to the reference translation, the actual post-
edits, which are used to update the system do not show the same behavior. We
suspect that this is an artifact of a domain adaptation effect, since the post-edited
documents are similar to each other within every session. The translators however,
being non-professional and not trained at all in patent translation or subject matter,
could not produce translations that are closer to the reference translations, but
stay approximately at the same level. A similar effect to what we have already
observed in the previous study.

Compared to the results of using the graphical interface, we őnd that this time
there is no reduction in the quality of the post-edits with respect to the references
using the NMT system and the textual interface. The MT outputs however are
signiőcantly improved in this respect. This conőrms the őndings of [Bentivogli
et al., 2016a].

While NMT systems are certainly able to pick up new vocabulary at ease, see
e.g. the examples in [Karimova et al., 2017] from the same data, other changes are
harder to trace since the model is essentially a black box. Changes can be very
subtle, and the responsible triggers may be unknown.

To exemplify this, consider the translation of patent WO-2007134473-A1, titled
Image recording means with local adaptive exposure control (section H). In the
non-adapted system there was the problem that translations were too short and
repetitions occurred:

Dies wird insbesondere bei Anwendungen, die eine hohe Beleuchtungsdynamik er-
fordern oder eine hohe Bewegungsdynamik erfordern, was eine hohe Bewegungsdy-
namik erfordert.

The reference being:
34We do however observe significant improvements for adaptation using raw time (85, 336 ms

±3, 398 −7, 280 ms ±3, 154, p < 0.05 χ2(1) = 4.784) following Läubli et al. [2013], as well as
log-transformed raw time (−0.17416± 0.04674, p < 0.001 χ2(1) = 10.85) and log-transformed
normalized time (−0.17969± 0.04944, p < 0.01 χ2(1) = 10.588), following Green et al. [2013a],
as response variables. The response variables and the residuals of the respective models were
however not normally distributed according to quantitative tests (repeated Shapiro-Wilk W

tests [Shaphiro and Wilk, 1965; Royston, 1982]) and qualitative inspection with normal Q-Q
plots, for any configuration. We choose to report normalized, non-transformed results for
interpretability [Lo and Andrews, 2015], and comparability to the other normalized response
variables used in this and the previous study.

202

5.8 User Study with Neural Machine Translation

Dies ist insbesondere bei Applikationen hilfreich welche eine hohe Lichtdynamik
erfordern oder welche eine hohe Bewegungsdynamik aufweisen wie zum Beispiel
der Einsatz im Bereich Fahrerassistenzfunktionen für Automobile.

The adapted system produced however a much more reasonable translation, also
getting a central part of the translation right (underlined):

Dies wird insbesondere bei Anwendungen, die eine hohe Beleuchtungsdynamik er-
fordern oder hohe Bewegungsdynamik benötigen, wie z.B. im Feldfeld von Fahreras-
sistenzfunktionen für Kraftfahrzeuge verwendet.

The English source for this segment:

This is helpful in particular in applications which require a high level of lighting dy-
namics or which have a high level of movement dynamics, such as for example use in
the field of driver assistance functions for motor vehicles.

The peculiarity of this example is that neither the previous segments in the
same patent, nor the other patent previously translated with the same model
(US-20100003762-A135), or the user generated post-edits would suggest this change.
What is more, the term Fahrerassistenzfunktionen does not even occur in the in-domain
training data, but is still reachable due to the use of sub-words as atomic translation
units.

Another issue with NMT arises from the application of sub-word units: While
using sub-words enables learning of new, previously unknown vocabulary, it has
the side-effect that łhallucinatedž words may appear in the target, cf. [Koehn
and Knowles, 2017]. Translating into German, this can be problematic since long
compound words need to be constructed on the target side, for example:

Elektronenstärkigkeitserhöhung,

which is not a valid German word but could easily be mistaken for one.

35Permanent chemical marker and identification of information in polymers, classified under
section C.

203

6 Summary & Outlook

“ [. . .] a 95% FAHQT system in the worst case produces a translated text that is
analogous to a jar of cookies, only 5% of which are poisoned.ž

[Carbonell and Tomita, 1985]

We have presented three distinct approaches for preference learning for MT:
First we turned to applying pairwise ranking for tuning SMT, developing a

method for efficient, true online preference learning. To this end, we also presented
an application of a matrix-norm based regularization method, which can be used
for feature selection as well as multi-task learning. In extensive experimental
evaluations we found among other things, that our method can be used to őnd
the important features in vast amounts of training data, which also generalize to
out-of-domain (with respect to training) data sets. We further determined that
under some circumstances, we are able exploit commonalities found in related
but diverse data sets, leading to improved results compared to random splits or
simple accumulation of data sets. Another őnding which is worth pointing out,
is that signiőcantly different variants of the proposed tuning algorithm as well as
other, unrelated algorithms tend to perform similarly when a rigorous search for
hyperparameters is performed. We also found indications that tuning the linear
model of SMT systems possibly attained an upper limit, at least in our setting,
since despite large training efforts, no or only little gains in translation quality could
be achieved for a number of setups. An important aspect of our approach, which
also delivers state-of-the art performance in SMT, is the use of sparse features,
most notably rule identiőers which add a powerful fully discriminative translation
model to SMT systems. Overall, with this approach we have found a method to
train SMT models through preference learning that can generalize well.

Secondly, we turned to CAT, for which we developed a reranking approach, based
on the same general ideas as our SMT tuning approach. However, the focus was
different Ð we sought a method to learn more őne-grained preferences since the
application demands a more specialized approach. The goal in this work was to
directly learn preferences from post-edits to be able to effectively and promptly
correct errors in the translation outputs of the MT system. We therefore developed
a method to obtain representations of post-edits which can be directly used for
learning, instead of inducing a ranking by utilizing an external scoring function as
in the previous approach. We have shown the algorithm’s effectiveness in a series
of experiments, where we also showed that the method can improve over already
otherwise adapted systems. We found however, that the models learned with this

204

method were possibly not portable without further processing. Again, as with the
previous approach, we employed sparse features that include identiőers for the
smallest translation units of the underlying SMT system.

In our next work, also an application for CAT, we őrst combined our developed
tuning method with a graphical interface, that allowed to directly, without ranking
and without other automatic induction methods, exploit literal user corrections to
a SMT system. With this approach we tried the boldest method of learning from
post-edits. In a user study we set-up and conducted, we found that the approach
works very well, as it could quickly adapt (even within the range of short documents)
to feedback and thus provided an improved user experience. Again, also with this
approach, we used sparse features (the same as in our tuning approach) to have an
expressive model which can learn very őne-grained preferences. In this case, due to
the combination with the graphical interface, we could learn preferences almost
in real-time and which were directly derived from user input. While the general
approach of translating with a graphical user interface may not be a practical,
we could still explore what should be possible in adaptation for MT. Lastly, we
utilized a state-of-the-art NMT approach, and implemented a very efficient method
of online adaptation. We found that overall system was vastly simpler than the
one we had to build for SMT, while we were still able to directly learn from user
inputs due to the combination of online learning and sub-word representations,
which also allows to learn new vocabulary without another feedback loop. With
the lessons learned from our őrst user study, we conducted a second study of larger
scale, in which we found very encouraging results for NMT in CAT.

With the background of the results of our last user study, we believe that
online adaptive NMT systems are the way forward in CAT. While tuning for SMT
seems to have reached a limit, the improvements that can be had through NMT
are tremendous. In this direction we think that multi-task and multi-domain
learning systems could lead to further improvements for practical implementations
of CAT systems. In this context it is also imperative to gain further insight on
the adaptation process itself, and to explore the external factors that facilitate or
prevent effective adaptation. Furthermore, we think that different types of loss
functions, as exempliőed in our SMT tuning approach, could have an large impact
by improving baseline translation quality or adaptation performance.

205

Bibliography

Agarwal, A. and Lavie, A. Meteor, M-BLEU and M-TER: Evaluation Metrics
for High-Correlation with Human Rankings of Machine Translation Output. In
Proceedings WMT. 2008.

Airola, A., Pahikkala, T., and Salakoski, T. Training Linear Ranking SVMs in
Linearithmic Time Using Red-Black Trees. In Pattern Recognition Letters, 2011.

Akabe, K., Neubig, G., Sakti, S., Toda, T., and Nakamura, S. Discriminative Lan-
guage Models as a Tool for Machine Translation Error Analysis. In Proceedings
of COLING. 2014.

Alabau, V., Bonk, R., Buck, C., Carl, M., Casacuberta, F., García-Martínez, M.,
González, J., Leiva, L., Mesalao, B., Ortiz, D. et al. Advanced Computer Aided
Translation with a Web-Based Workbench. In Proceedings of the Workshop on
Post-editing Technology and Practice. 2013a.

Alabau, V., Bonk, R., Buck, C., Carl, M., Casacuberta, F., Martínez, M. G.,
González, J., Koehn, P., Leiva, L., Mesa-Lao, B., Ortiz, D., Saint-Amand, H.,
Sanchis, G., and Tsoukala, C. CASMACAT: An Open Source Workbench for
Advanced Computer-Aided Translation. In The Prague Bulletin of Mathematical
Linguistics, 2013b.

Alabau, V., González-Rubio, J., Ortiz-Martínez, D., Casacuberta, F., Martinez,
M. G., Mesa-Lao, B., Petersen, D. C., Dragsted, B., and Carl, M. Integrating
Online and Active Learning in a Computer-Assisted Translation Workbench. In
Proceedings of AMTA. 2014.

Alabau, V., Leiva, L. A., Ortiz-Martınez, D., and Casacuberta, F. User Evaluation
of Interactive Machine Translation Systems. In Proceedings of EAMT. 2012.

Albrecht, J. Visualizing and Correcting Machine Translation. Tech. rep., Depart-
ment of Computer Science, University of Pittsburgh, 2008.

Albrecht, J. S., Hwa, R., and Marai, G. E. Correcting Automatic Translations
Through Collaborations Between MT and Monolingual Target-Language Users.
In Proceedings of EACL. 2009.

Ando, R. K. and Zhang, T. A Framework for Learning Predictive Structures From
Multiple Tasks and Unlabeled Data. In Machine Learning Research, 2005.

206

Bibliography

Arenas, A. G. Productivity and Quality in the Post-Editing of Outputs From
Translation Memories and Machine Translation. In Localisation Focus, 2008.

Argyriou, A., Evgeniou, T., and Pontil, M. Multi-Task Feature Learning. In
Proceedings of NIPS. 2007.

Argyriou, A., Evgeniou, T., and Pontil, M. Convex Multi-Task Feature Learning.
In Machine Learning, 2008.

Arun, A., Dyer, C., Haddow, B., Blunsom, P., Lopez, A., and Koehn, P. Monte
Carlo Inference and Maximization for Phrase-Based Translation. In Proceedings
of CoNLL. 2009.

Arun, A. and Koehn, P. Online Learning Methods For Discriminative Training of
Phrase Based Statistical Machine Translation. In Proceedings of MT Summit XI.
2007.

Auli, M., Galley, M., and Gao, J. Large-Scale Expected BLEU Training of Phrase-
Based Reordering Models. In Proceedings of EMNLP. 2014.

Aziz, W., Castilho, S., and Specia, L. PET: A Tool for Post-Editing and Assessing
Machine Translation. In Proceedings of LREC. 2012.

Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics
Using R. Cambridge University Press, New York City, NY, USA, 2008.

Baayen, R. H., Davidson, D. J., and Bates, D. M. Mixed-Effects Modeling with
Crossed Random Effects for Subjects and Items. In Journal of Memory and
Language, 2008.

Bahdanau, D., Cho, K., and Bengio, Y. Neural Machine Translation by Jointly
Learning to Align and Translate. In CoRR, 2014.

Bahl, L. R., Jelinek, F., and Mercer, R. L. A Maximum Likelihood Approach to
Continuous Speech Recognition. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1983.

Baker, K. L., Franz, A. M., Jordan, P. W., Mitamura, T., and Nyberg, E. H. Coping
with Ambiguity in a Large-Scale Machine Translation System. In Proceedings of
COLING. 1994.

Balling, L. W. and Carl, M. Post-Editing of Machine Translation: Processes and
Applications. Cambridge Scholars Publishing, 2014.

Baltescu, P. and Blunsom, P. A Fast and Simple Online Synchronous Context Free
Grammar Extractor. In The Prague Bulletin of Mathematical Linguistics, 2014.

207

Bibliography

Banerjee, S. and Lavie, A. METEOR: An Automatic Metric for MT Evaluation with
Improved Correlation with Human Judgments. In Proceedings of ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization. 2005.

Bar-Hillel, Y. The Present State of Research on Mechanical Translation. In
American Documentation, 1951.

Bar-Hillel, Y. The Present Status of Automatic Translation of Languages. In
Advances in Computers, 1960.

Barr, D. J., Levy, R., Scheepers, C., and Tily, H. J. Random Effects Structure for
Confirmatory Hypothesis Testing: Keep It Maximal. In Journal of Memory and
Language, 2013.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S.,
Lagarda, A., Ney, H., Tomás, J., Vidal, E. et al. Statistical Approaches to
Computer-Assisted Translation. In Computational Linguistics, 2009.

Bates, D., Mächler, M., Bolker, B., and Walker, S. Fitting Linear Mixed-Effects
Models Using lme4. In arXiv preprint arXiv:1406.5823, 2014.

Bazrafshan, M., Chung, T., and Gildea, D. Tuning as Linear Regression. In
Proceedings of NAACL. 2012.

Beaton, A. and Contreras, G. Sharing the Continental Airlines and SDL Post-
Editing Experience. 2010.

Bentivogli, L., Bertoldi, N., Cettolo, M., Federico, M., Negri, M., and Turchi, M.
On the Evaluation of Adaptive Machine Translation for Human Post-Editing. In
IEEE/ACM TASLP, 2016a.

Bentivogli, L., Bisazza, A., Cettolo, M., and Federico, M. Neural versus
Phrase-Based Machine Translation Quality: A Case Study. In arXiv preprint
arXiv:1608.04631, 2016b.

Berg-Kirkpatrick, T., Burkett, D., and Klein, D. An Empirical Investigation of
Statistical Significance in NLP. In Proceedings of EMNLP-CoNLL. 2012.

Berka, J., Bojar, O., Fishel, M., Popovic, M., and Zeman, D. Automatic MT Error
Analysis: Hjerson Helping Addicter. In Proceedings of LREC. 2012.

Bernardini, S. Think-Aloud Protocols in Translation Research: Achievements,
Limits, Future Prospects. In Target. International Journal of Translation Studies,
2001.

208

Bibliography

Bertoldi, N., Cattoni, R., Cettolo, M., Farajian, M., Federico, M., Caroselli, D.,
Mastrostefano, L., Rossi, A., Trombetti, M., Germann, U. et al. MMT: New
Open Source MT for the Translation Industry. In Proceedings of EAMT. 2017.

Bertoldi, N., Cettolo, M., and Federico, M. Cache-Based Online Adaptation for
Machine Translation Enhanced Computer Assisted Translation. In Proceedings
of MT Summit XIV, 2013.

Bertoldi, N., Simianer, P., Cettolo, M., Wäschle, K., Federico, M., and Riezler, S.
Online Adaptation to Post-Edits for Phrase-Based Statistical Machine Translation.
In Machine Translation, 2014.

Biçici, E. and Yuret, D. Instance Selection for Machine Translation Using Feature
Decay Algorithms. In Proceedings of WMT. 2011.

Bisazza, A. and Federico, M. A Survey of Word Reordering in Statistical Machine
Translation: Computational Models and Language Phenomena. In Computational
linguistics, 2016.

Blain, F., Schwenk, H., and Senellart, J. Incremental Adaptation Using Translation
Information and Post-Editing Analysis. In Proceedings of IWSLT. 2012.

Blunsom, P., Cohn, T., and Osborne, M. A Discriminative Latent Variable Model
for Statistical Machine Translation. In Proceedings of ACL-HLT. 2008.

Blunsom, P. and Osborne, M. Probabilistic Inference for Machine Translation. In
Proceedings of EMNLP. 2008.

Bojar, O., Buck, C., Callison-Burch, C., Haddow, B., Koehn, P., Monz, C., Post,
M., Saint-Amand, H., Soricut, R., and Specia, L., eds. Proceedings of WMT.
2013.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz,
C., Pecina, P., Post, M., Saint-Amand, H. et al. Findings of the 2014 Workshop
on Statistical Machine Translation. In Proceedings of WMT. 2014a.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Monz, C., Post, M.,
and Specia, L., eds. Proceedings of WMT. 2014b.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huang,
S., Huck, M., Koehn, P., Liu, Q., Logacheva, V. et al. Findings of the 2017
Conference on Machine Translation. In Proceedings of WMT. 2017.

Bojar, O., Chatterjee, R., Federmann, C., Graham, Y., Haddow, B., Huck, M.,
Jimeno Yepes, A., Koehn, P., Logacheva, V., Monz, C., Negri, M., Neveol, A.,
Neves, M., Popel, M., Post, M., Rubino, R., Scarton, C., Specia, L., Turchi, M.,

209

Bibliography

Verspoor, K., and Zampieri, M. Findings of the 2016 Conference on Machine
Translation. In Proceedings of WMT. 2016.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Hokamp, C., Huck, M.,
Logacheva, V., and Pecina, P., eds. Proceedings of WMT. 2015.

Bottou, L. Stochastic Learning. In Advanced Lectures on Machine Learning.
Springer, Berlin, Germany, 2004.

Bousquet, O. and Bottou, L. The Tradeoffs of Large Scale Learning. In Proceedings
of NIPS. 2008.

Braune, F., Fraser, A. M., III, H. D., and Tamchyna, A. A Framework for
Discriminative Rule Selection in Hierarchical Moses. In Proceedings of WMT.
2016.

Britz, D., Goldie, A., Luong, M., and Le, Q. V. Massive Exploration of Neural
Machine Translation Architectures. In CoRR, 2017.

Brown, P., Cocke, J., Pietra, S. D., Pietra, V. D., Jelinek, F., Mercer, R., and
Roossin, P. A Statistical Approach to Language Translation. In Proceedings of
COLING. 1988.

Brown, P. F., Chen, S. F., Della Pietra, S. A., Della Pietra, V. J., Kehler, A. S.,
and Mercer, R. L. Automatic speech recognition in machine-aided translation. In
Computer Speech & Language, 1994.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty,
J. D., Mercer, R. L., and Roossin, P. S. A Statistical Approach to Machine
Translation. In Computational Linguistics, 1990.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. The Mathematics
of Statistical Machine Translation: Parameter Estimation. In Computational
Linguistics, 1993.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and
Hullender, G. Learning to Rank Using Gradient Descent. In Proceedings of
ICML. 2005.

Cai, Y., Sun, Y., Cheng, Y., Li, J., and Goodison, S. Fast Implementation of L1
Regularized Learning Algorithms Using Gradient Descent Methods. In Proceedings
of SIAM International Conference on Data Mining. 2010.

Callison-Burch, C. Fast, Cheap, and Creative: Evaluating Translation Quality
Using Amazon’s Mechanical Turk. In Proceedings of EMNLP. 2009.

210

Bibliography

Callison-Burch, C., Bannard, C., and Schroeder, J. Improved Statistical Translation
Through Editing. In Proceedings of EAMT. 2004.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and Schroeder, J. Further
Meta-Evaluation of Machine Translation. In Proceedings of WMT. 2008.

Callison-Burch, C., Koehn, P., Fordyce, C. S., and Monz, C., eds. Proceedings of
WMT. 2007.

Callison-Burch, C., Koehn, P., Monz, C., and Zaidan, O. F. Findings of the 2011
Workshop on Statistical Machine Translation. In Proceedings of WMT. 2011a.

Callison-Burch, C., Koehn, P., Monz, C., and Zaidan, O. F., eds. Proceedings of
WMT. 2011b.

Callison-Burch, C., Osborne, M., and Koehn, P. Re-Evaluating the Role of Bleu in
Machine Translation Research. In Proceedings of EACL. 2006.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning to Rank: From
Pairwise Approach to Listwise Approach. In Proceedings of ICML. 2007.

Carbonell, J. G. and Tomita, M. New Approaches to Machine Translation. In
Proceedings of the Conference on Theoretical and Methodological Issues in
Machine Translation of Natural Languages. 1985.

Carl, M. Translog-II: A Program for Recording User Activity Data for Empirical
Translation Process Research. In Proceedings of LREC. 2012.

Carpenter, B. Lazy Sparse Stochastic Gradient Descent for Regularized Multinomial
Logistic Regression. Tech. rep., Alias-i, Inc., 2008.

Carpuat, M., Daumé, H., Fraser, A., Quirk, C., Braune, F., Clifton, A. et al. Domain
Adaptation in Machine Translation. In Johns Hopkins Summer Workshop Final
Report. 2012.

Carpuat, M. and Simard, M. The Trouble with SMT Consistency. In Proceedings
of WMT. 2012.

Carter, S. and Monz, C. Discriminative Syntactic Reranking for Statistical Machine
Translation. In Proceedings of AMTA. 2010.

Caruana, R. Multitask Learning: A Knowledge-Based Source of Inductive Bias. In
Proceedings of ICML. 1993.

Caruana, R. Multitask Learning. In Machine Learning, 1997.

211

Bibliography

Casacuberta, F., Civera, J., Cubel, E., Lagarda, A. L., Lapalme, G., Macklovitch,
E., and Vidal, E. Human Interaction for High-Quality Machine Translation. In
Communications of the ACM, 2009.

Casanellas, L. and Marg, L. Assumptions, Expectations and Outliers in Post-Editing.
In Proceedings of the Workshop on Post-Editing Technology and Practice. 2014.

Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., and Way, A. Is
Neural Machine Translation the New State of the Art? In The Prague Bulletin
of Mathematical Linguistics, 2017.

Cavallanti, G., Cesa-Bianchi, N., and Gentile, C. Linear Algorithms for Online
Multitask Classification. In Journal of Machine Learning Research, 2010.

Cer, D., Jurafsky, D., and Manning, C. D. Regularization and Search for Minimum
Error Rate Training. In Proceedings of WMT. 2008.

Cer, D., Manning, C. D., and Jurafsky, D. The Best Lexical Metric for Phrase-
Based Statistical MT System Optimization. In Proceedings of NAACL-HLT.
2010.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games. Cambridge
University Press, New York City, NY, USA, 2006.

Cesa-Bianchi, N., Reverberi, G., and Szedmak, S. Online Learning Algorithms for
Computer-Assisted Translation. Tech. rep., SMART Project, 2008.

Cettolo, M., Bertoldi, N., and Federico, M. Methods for Smoothing the Optimizer
Instability in SMT. 2011.

Cettolo, M., Bertoldi, N., and Federico, M. The Repetition Rate of Text as a
Predictor of the Effectiveness of Machine Translation Adaptation. In Proceedings
of AMTA. 2014a.

Cettolo, M., Federico, M., and Bertoldi, N. Mining Parallel Fragments From
Comparable Texts. In Proceedings of IWSLT. 2010.

Cettolo, M., Girardi, C., and Federico, M. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of EAMT. 2012.

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., Cattoni, R., and Federico, M.
The IWSLT 2015 Evaluation Campaign. In Proceedings of IWSLT, 2015.

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., and Federico, M. Report on
the 11th IWSLT Evaluation Campaign, IWSLT 2014. In Proceedings of IWSLT.
2014b.

212

Bibliography

Cettolo, M., Servan, C., Bertoldi, N., Federico, M., Barrault, L., and Schwenk, H.
Issues in Incremental Adaptation of Statistical MT From Human Post-Edits. In
Proceedings of the Workshop on Post-editing Technology and Practice. 2013.

Chapelle, O., Do, C. B., Teo, C. H., Le, Q. V., and Smola, A. J. Tighter Bounds
for Structured Estimation. In Proceedings of NIPS. 2009.

Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., and Tseng,
B. Boosted Multi-Task Learning. In Machine Learning, 2011.

Chappelier, J.-C. and Rajman, M. A Generalized CYK Algorithm for Parsing
Stochastic CFG. In Proceedings of TAPD. 1998.

Chen, H., Huang, S., Chiang, D., Dai, X.-Y., , and Chen, J. Top-Rank Enhanced
Listwise Optimization for Statistical Machine Translation. In Proceedings of
CoNLL. 2017.

Chen, S. F. and Goodman, J. An Empirical Study of Smoothing Techniques for
Language Modeling. In Proceedings of ACL. 1996.

Cheng, S., Huang, S., Chen, H., Dai, X., and Chen, J. PRIMT: A Pick-Revise
Framework for Interactive Machine Translation. In Proceedings of NAACL-HLT.
2016.

Cherry, C. and Foster, G. Batch Tuning Strategies for Statistical Machine Transla-
tion. In Proceedings of NAACL-HLT. 2012.

Chiang, D. A Hierarchical Phrase-Based Model for Statistical Machine Translation.
In Proceedings of ACL. 2005.

Chiang, D. Hierarchical Phrase-Based Translation. In Computational Linguistics,
2007.

Chiang, D. Hope and Fear for Discriminative Training of Statistical Translation
Models. In Journal of Machine Learning Research, 2012.

Chiang, D., Knight, K., and Wang, W. 11,001 New Features for Statistical Machine
Translation. In Proceedings of NAACL-HLT. 2009.

Chiang, D., Marton, Y., and Resnik, P. Online Large-Margin Training of Syntactic
and Structural Translation Features. In Proceedings of EMNLP. 2008.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation. In arXiv preprint arXiv:1406.1078, 2014.

213

Bibliography

Chrisman, L. Learning Recursive Distributed Representations for Holistic Compu-
tation. In Connection Science, 1991.

Chu, C., Dabre, R., and Kurohashi, S. An Empirical Comparison of Simple
Domain Adaptation Methods for Neural Machine Translation. In arXiv preprint
arXiv:1701.03214, 2017.

Chung, T. and Galley, M. Direct Error Rate Minimization for Statistical Machine
Translation. In Proceedings of WMT. 2012.

Church, K. W. and Gale, W. A. Probability Scoring for Spelling Correction. In
Statistics and Computing, 1991.

Clark, H. H. The Language-as-Fixed-Effect Fallacy: A Critique of Language
Statistics in Psychological Research. In Journal of Verbal Learning and Verbal
Behavior, 1973.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. Better Hypothesis Testing
for Statistical Machine Translation: Controlling for Optimizer Instability. In
Proceedings of ACL-HLT. 2011.

Cohen, W. W., Schapire, R. E., and Singer, Y. Learning to Order Things. In
Proceedings of NIPS. 1998.

Coleman, E. B. Generalizing to a Language Population. In Psychological Reports,
1964.

Collins, M. Discriminative Training Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms. In Proceedings of EMNLP. 2002.

Collins, M. and Duffy, N. New Ranking Algorithms for Parsing and Tagging:
Kernels Over Discrete Structures, and the Voted Perceptron. In Proceedings of
ACL. 2002.

Collins, M. and Koo, T. Discriminative Reranking for Natural Language Parsing.
In Computational Linguistics, 2005.

Collobert, R. and Bengio, S. Links Between Perceptrons, MLPs and SVMs. In
Proceedings of ICML. 2004.

Collobert, R., Sinz, F., Weston, J., and Bottou, L. Trading Convexity for Scalability.
In Proceedings of ICML. 2006.

Collobert, R. and Weston, J. A Unified Architecture for Natural Language Process-
ing: Deep Neural Networks with Multitask Learning. In Proceedings of ICML.
2008.

214

Bibliography

Cortes, C. and Vapnik, V. Support-Vector Networks. In Machine Learning, 1995.

Coughlin, D. Correlating Automated and Human Assessments of Machine Transla-
tion Quality. In Proceedings of MT Summit IX. 2003.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. Online
Passive-Aggressive Algorithms. In Journal of Machine Learning Research, 2006.

Crammer, K. and Singer, Y. Ultraconservative Online Algorithms for Multiclass
Problems. In Journal of Machine Learning Research, 2003.

Cubel, E., González, J., Lagarda, A., Casacuberta, F., Juan, A., and Vidal, E.
Adapting Finite-State Translation to the TransType2 Project. In Proceedings of
EAMT/CLAW. 2003.

Cui, L., Chen, X., Zhang, D., Liu, S., Li, M., and Zhou, M. Multi-Domain
Adaptation for SMT Using Multi-Task Learning. In Proceedings of EMNLP.
2013.

Cuong, H. and Sima’an, K. A Survey of Domain Adaptation for Statistical Machine
Translation. In Machine Translation, 2018.

Darragh, J. J., Witten, I. H., and James, M. L. The Reactive Keyboard: A Predictive
Typing Aid. In Computer, 1990.

Daumé, H., III. Practical Structured Learning Techniques for Natural Language
Processing. Ph.D. thesis, University of Southern California, 2006.

Daumé, H., III. Frustratingly Easy Domain Adaptation. In CoRR, 2009.

Daumé, H., III, Langford, J., and Marcu, D. Search-Based Structured Prediction.
In Machine Learning, 2009.

Daumé III, H. Notes on CG and LM-BFGS Optimization of Logistic Regression,
2004.

Dauphin, G. M. Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie, E.,
Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P. et al. Unsupervised
and Transfer Learning Challenge: A Deep Learning Approach. In Proceedings of
ICML Workshop on Unsupervised and Transfer Learning. 2012.

De Sousa, S. C., Aziz, W., and Specia, L. Assessing the Post-Editing Effort for
Automatic and Semi-Automatic Translations of DVD Subtitles. In Proceedings
of RANLP. 2011.

215

Bibliography

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. Large Scale
Distributed Deep Networks. In Proceedings of NIPS. 2012.

Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on Large
Clusters. In Communications of ACM, 2008.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum Likelihood From
Incomplete Data via the EM Algorithm. In Journal of the Royal Statistical
Society. Series B (Methodological), 1977.

DeNeefe, S., Knight, K., and Chan, H. H. Interactively Exploring a Machine
Translation Model. In Proceedings of ACL (Interactive Poster and Demonstration
Sessions). 2005.

DeNero, J., Gillick, D., Zhang, J., and Klein, D. Why Generative Phrase Models
Underperform Surface Heuristics. In Proceedings of WMT. 2006.

Denkowski, M. Machine Translation for Human Translators. Ph.D. thesis, Carnegie
Mellon University, 2015.

Denkowski, M. and Lavie, A. Choosing the Right Evaluation for Machine Trans-
lation: An Examination of Annotator and Automatic Metric Performance on
Human Judgment Tasks. In Proceedings of AMTA. 2010.

Denkowski, M. and Lavie, A. TransCenter: Web-Based Translation Research Suite.
In Proceedings of the Workshop on Post-editing Technology and Practice. 2012.

Denkowski, M., Lavie, A., and Dyer, C. Learning From Post-Editing: Online Model
Adaptation for Statistical Machine Translation. In Proceedings of EACL, 2014a.

Denkowski, M., Lavie, A., Lacruz, I., and Dyer, C. Real Time Adaptive Machine
Translation for Post-Editing with cdec and TransCenter. In Proceedings of EACL
Workshop on Humans and Computer-Assisted Translation. 2014b.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. Fast
and Robust Neural Network Joint Models for Statistical Machine Translation. In
Proceedings of ACL. 2014.

Doddington, G. Automatic Evaluation of Machine Translation Quality Using
N-gram Co-Occurrence Statistics. In Proceedings of HLT. 2002.

Domingo, M., Peris, A., and Casacuberta, F. Interactive-Predictive Translation
Based on Multiple Word-Segments. In Baltic Journal of Modern Computing,
2016.

216

Bibliography

Dostert, L. E. The Georgetown-IBM Experiment. In Machine Translation of
Languages, 1955.

Draper, N. and Smith, H. Applied Regression Analysis. Wiley, New York [u.a.],
1966.

Dredze, M., Kulesza, A., and Crammer, K. Multi-Domain Learning by Confidence-
Weighted Parameter Combination. In Machine Learning, 2010.

Dreyer, M. and Dong, Y. APRO: All-Pairs Ranking Optimization for MT Tuning.
In Proceedings of NAACL-HLT. 2015.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Tech. Rep. UCB/EECS-2010-24, EECS
Department, University of California, Berkeley, 2010.

Duh, K., Sudoh, K., Tsukada, H., Isozaki, H., and Nagata, M. N-Best Reranking
by Multitask Learning. In Proceedings of WMT/MetricsMATR. 2010.

Dyer, C. Using a Maximum Entropy Model to Build Segmentation Lattices for MT.
In Proceedings of NAACL-HLT. 2009.

Dyer, C. Two Monolingual Parses Are Better Than One (Synchronous Parse). In
Proceedings of NAACL-HLT. 2010a.

Dyer, C. Minimum Error Rate Training and the Convex Hull Semiring. In CoRR,
2013.

Dyer, C., Chahuneau, V., and Smith, N. A. A Simple, Fast, and Effective Repa-
rameterization of IBM Model 2. In Proceedings of ACL. 2013.

Dyer, C., Gimpel, K., Clark, J. H., and Smith, N. A. The CMU-ARK German-
English Translation System. In Proceedings of WMT. 2011.

Dyer, C., Muresan, S., and Resnik, P. Generalizing Word Lattice Translation. Tech.
rep., Maryland University, College Park, 2008.

Dyer, C., Weese, J., Setiawan, H., Lopez, A., Ture, F., Eidelman, V., Ganitkevitch,
J., Blunsom, P., and Resnik, P. cdec: A Decoder, Alignment, and Learning
Framework for Finite-State and Context-Free Translation Models. In Proceedings
of ACL (System Demonstrations). 2010.

Dyer, C. J. A Formal Model of Ambiguity and Its Applications in Machine
Translation. Ph.D. thesis, 2010b.

Earley, J. An Efficient Context-Free Parsing Algorithm. In Communications of the
ACM, 1970.

217

Bibliography

Efron, B. Bootstrap Methods: Another Look at the Jackknife. In Breakthroughs in
Statistics. Springer, Berlin, Germany, 1992.

Efron, B. and Tibshirani, R. J. An Introduction to the Bootstrap. CRC press, Boca
Raton, Florida, 1994.

Eidelman, V. Optimization Strategies for Online Large-Margin Learning in Machine
Translation. In Proceedings of WMT. 2012.

Eidelman, V., Marton, Y., and Resnik, P. Online Relative Margin Maximization
for Statistical Machine Translation. In Proceedings of ACL. 2013a.

Eidelman, V., Wu, K., Ture, F., Resnik, P., and Lin, J. Mr. MIRA: Open-Source
Large-Margin Structured Learning on MapReduce. In Proceedings of ACL (System
Demonstrations). 2013b.

Eidelman, V., Wu, K., Türe, F., Resnik, P., and Lin, J. J. Towards Efficient
Large-Scale Feature-Rich Statistical Machine Translation. In Proceedings of
WMT. 2013c.

Elman, J. L. Finding Structure in Time. In Cognitive Science, 1990.

Erdmann, G. and Gwinnup, J. Drem: The AFRL Submission to the WMT15
Tuning Task. In Proceedings of WMT. 2015.

España Bonet, C., Enache, R., Slaski, A., Ranta, A., Màrquez Villodre, L., and
González Bermúdez, M. Patent Translation within the MOLTO Project. In
Proceedings of MT Summit XIII. 2011.

Esteban, J., Lorenzo, J., Valderrábanos, A. S., and Lapalme, G. TransType2:
An Innovative Computer-Assisted Translation System. In Proceedings of ACL
(Interactive Poster and Demonstration Sessions). 2004.

Estrella, P. S., Hamon, O., and Popescu-Belis, A. How Much Data Is Needed for
Reliable MT Evaluation? Using Bootstrapping to Study Human and Automatic
Metrics. In Proceedings of MT Summit XI. 2007.

Evgeniou, T. and Pontil, M. Regularized Multi–Task Learning. In Proceedings of
SIGKDD. 2004.

Federico, M., Bertoldi, N., and Cettolo, M. IRSTLM: An Open Source Toolkit for
Handling Large Scale Language Models. In Proceedings of Interspeech. 2008.

Federico, M., Bertoldi, N., Cettolo, M., Negri, M., Turchi, M., Trombetti, M.,
Cattelan, A., Farina, A., Lupinetti, D., Martines, A., Massidda, A., Schwenk,
H., Barrault, L., Blain, F., Koehn, P., Buck, C., and Germann, U. The Matecat
Tool. In Proceedings of COLING. 2014.

218

Bibliography

Federico, M., Cattelan, A., and Trombetti, M. Measuring User Productivity in
Machine Translation Enhanced Computer Assisted Translation. In Proceedings
of AMTA. 2012.

Finkel, J. R. and Manning, C. D. Hierarchical Bayesian Domain Adaptation. In
Proceedings of NAACL-HLT. 2009.

Flanigan, J., Dyer, C., and Carbonell, J. G. Large-Scale Discriminative Training
for Statistical Machine Translation Using Held-Out Line Search. In Proceedings
of NAACL-HLT. 2013.

Flournoy, R. and Duran, C. Machine Translation and Document Localization at
Adobe: From Pilot to Production. In Proceedings of MT Summit XII, 2009.

Forcada, M. L., Sánchez-Martínez, F., Esplà-Gomis, M., and Specia, L. Towards
Optimizing MT for Post-Editing Effort: Can BLEU Still Be Useful? In The
Prague Bulletin of Mathematical Linguistics, 2017.

Forster, K. I. and Dickinson, R. G. More on the Language-as-Fixed-Effect Fallacy:
Monte Carlo Estimates of Error Rates for F1, F2, F’, and Min F’. In Journal of
Verbal Learning and Verbal Behavior, 1976.

Foster, G. TransType Project Description. Tech. rep., RALI-University of Montreal,
1998.

Foster, G., Isabelle, P., and Plamondon, P. Word Completion: A First Step Toward
Target-Text Mediated IMT. In Proceedings of COLING. 1996.

Foster, G., Isabelle, P., and Plamondon, P. Target-Text Mediated Interactive
Machine Translation. In Machine Translation, 1997.

Foster, G. and Kuhn, R. Stabilizing Minimum Error Rate Training. In Proceedings
of WMT. 2009.

Foster, G., Langlais, P., and Lapalme, G. TransType: Text Prediction for Transla-
tors. In Proceedings of ICHLT. 2002a.

Foster, G., Langlais, P., and Lapalme, G. User-Friendly Text Prediction for
Translators. In Proceedings of the EMNLP. 2002b.

Freitag, M. and Al-Onaizan, Y. Fast Domain Adaptation for Neural Machine
Translation. In arXiv preprint arXiv:1612.06897, 2016.

Freund, Y. and Schapire, R. E. Large Margin Classification Using the Perceptron
Algorithm. In Machine Learning, 1999.

219

Bibliography

Fuji, M., Fujita, A., Utiyama, M., Sumita, E., and Matsumoto, Y. Patent Claim
Translation Based on Sublanguage-Specific Sentence Structure. In Proceedings of
MT Summit XV, 2015.

Fürnkranz, J. and Hüllermeier, E. Pairwise preference learning and ranking. In
Proceedings of ECML. 2003.

Fürnkranz, J. and Hüllermeier, E. Preference Learning: An Introduction. In
Preference Learning. Springer, 2010.

Gale, W. A., Church, K. W., and Yarowsky, D. One Sense Per Discourse. In
Proceedings of the Workshop on Speech and Natural Language. 1992.

Galley, M. and Manning, C. D. Accurate Non-Hierarchical Phrase-Based Translation.
In Proceedings of NAACL-HLT. 2010.

Galley, M. and Quirk, C. Optimal Search for Minimum Error Rate Training. In
Proceedings of EMNLP. 2011.

Galley, M., Quirk, C., Cherry, C., and Toutanova, K. Regularized Minimum Error
Rate Training. In Proceedings of EMNLP. 2013.

Ganitkevitch, J., Cao, Y., Weese, J., Post, M., and Callison-Burch, C. Joshua 4.0:
Packing, PRO, and Paraphrases. In Proceedings of WMT. 2012.

Gao, Q., Lewis, W., Quirk, C., and Hwang, M.-Y. Incremental Training and
Intentional Over-Fitting of Word Alignment. In Proceedings of MT Summit XIII,
2011.

Gao, Q. and Vogel, S. Parallel Implementations of Word Alignment Tool. In
Software Engineering, Testing, and Quality Assurance for Natural Language
Processing. 2008.

Garcia, I. Is Machine Translation Ready Yet? In Target. International Journal of
Translation Studies, 2010.

Garcia, I. Translating by Post-Editing: Is It the Way Forward? In Machine
Translation, 2011.

Gaspari, F., Toral, A., Naskar, S. K., Groves, D., and Way, A. Perception vs Reality:
Measuring Machine Translation Post-Editing Productivity. In Proceedings of the
Workshop on Post-editing Technology and Practice. 2014.

Gentzsch, W. Sun Grid Engine: Towards Creating a Compute Power Grid. In
Proceedings of First IEEE/ACM International Symposium on Cluster Computing
and the Grid. 2001.

220

Bibliography

Germann, U. Sampling Phrase Tables for the Moses Statistical Machine Translation
System. In The Prague Bulletin of Mathematical Linguistics, 2015.

Germann, U., Jahr, M., Knight, K., Marcu, D., and Yamada, K. Fast Decoding
and Optimal Decoding for Machine Translation. In Proceedings of ACL. 2001.

Gimpel, K. and Smith, N. A. Addendum to Structured Ramp Loss Minimization
for Machine Translation. Tech. rep., Language Technologies Institute, Carnegie
Mellon University, USA, 2012a.

Gimpel, K. and Smith, N. A. Structured Ramp Loss Minimization for Machine
Translation. In Proceedings of NAACL-HLT. 2012b.

Girardi, C., Bentivogli, L., Farajian, M. A., and Federico, M. MT-EQuAl: A
Toolkit for Human Assessment of Machine Translation Output. In Proceedings
of COLING (Demos). 2014.

Giraud-Carrier, C. A Note on the Utility of Incremental Learning. In Ai Commu-
nications, 2000.

González-Rubio, J., Ortiz-Martínez, D., Benedí, J.-M., and Casacuberta, F. Interac-
tive Machine Translation Using Hierarchical Translation Models. In Proceedings
of EMNLP. 2013.

Goodman, J. Semiring Parsing. In Computational Linguistics, 1999.

Goto, I., Chow, K.-P., Lu, B., Sumita, E., and Tsou, B. K. Overview of the Patent
Machine Translation Task at the NTCIR-10 Workshop. In Proceedings of NTCIR.
2013.

Graham, Y., Baldwin, T., Moffat, A., and Zobel, J. Continuous Measurement
Scales in Human Evaluation of Machine Translation. In Proceedings of LAW@
ACL. 2013a.

Graham, Y., Baldwin, T., Moffat, A., and Zobel, J. Continuous Measurement
Scales in Human Evaluation of Machine Translation. In Proceedings of the 7th
Linguistic Annotation Workshop & Interoperability with Discourse. 2013b.

Graham, Y., Baldwin, T., Moffat, A., and Zobel, J. Can Machine Translation
Systems Be Evaluated by the Crowd Alone. In Natural Language Engineering,
2017.

Graham, Y., Mathur, N., and Baldwin, T. Randomized Significance Tests in
Machine Translation. In Proceedings of WMT. 2014.

Green, S. Mixed-Initiative Natural Language Translation. Ph.D. thesis, Stanford
University, 2014.

221

Bibliography

Green, S., Cer, D., and Manning, C. An Empirical Comparison of Features and
Tuning for Phrase-Based Machine Translation. In Proceedings of WMT. 2014a.

Green, S., Chuang, J., Heer, J., and Manning, C. D. Predictive Translation Memory:
A Mixed-Initiative System for Human Language Translation. In Proceedings of
the 27th Annual ACM Symposium on User Interface Software and Technology.
2014b.

Green, S., Heer, J., and Manning, C. D. The Efficacy of Human Post-Editing for
Language Translation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2013a.

Green, S., Wang, S. I., Cer, D. M., and Manning, C. D. Fast and Adaptive Online
Training of Feature-Rich Translation Models. In Proceedings of ACL. 2013b.

Green, S., Wang, S. I., Chuang, J., Heer, J., Schuster, S., and Manning, C. D.
Human Effort and Machine Learnability in Computer Aided Translation. In
Proceedings of EMNLP. 2014c.

Guerberof, A. Productivity and Quality in MT Post-Editing. In Proceedings of MT
Summit XII: Workshop Beyond Translation Memories: New Tools for Translators
MT. 2009.

Guerberof, A. What Do Professional Translators Think About Post-Editing? In
The Journal of Specialised Translation, 2013.

Haddow, B. Applying Pairwise Ranked Optimisation to Improve the Interpolation
of Translation Models. In Proceedings of NAACL-HLT. 2013.

Haddow, B., Arun, A., and Koehn, P. SampleRank Training for Phrase-Based
Machine Translation. In Proceedings of WMT. 2011.

Hajlaoui, N., Kolovratnik, D., Väyrynen, J., Steinberger, R., and Varga, D. DCEP-
Digital Corpus of the European Parliament. In Proceedings of LREC. 2014.

Han, A. L.-F. and Wong, D. F. Machine Translation Evaluation: A Survey. In
arXiv preprint arXiv:1605.04515, 2016.

Hardt, D. and Elming, J. Incremental Re-Training for Post-Editing SMT. In
Proceedings of AMTA. 2010.

Hasan, S., Zens, R., and Ney, H. Are Very Large N-Best Lists Useful for SMT? In
Proceedings of NAACL-HLT (Short Papers). 2007.

Hasler, E., Blunsom, P., Koehn, P., and Haddow, B. Dynamic Topic Adaptation
for Phrase-Based MT. In Proceedings of EACL. 2014.

222

Bibliography

Hasler, E. and Haddow, B. Sparse Lexicalised Features and Topic Adaptation for
SMT. In Proceedings of IWSLT. 2012.

Hasler, E., Haddow, B., and Koehn, P. Margin Infused Relaxed Algorithm for
Moses. In The Prague Bulletin of Mathematical Linguistics, 2011.

He, X. and Deng, L. Maximum Expected Bleu Training of Phrase and Lexicon
Translation Models. In Proceedings of ACL. 2012.

Heaőeld, K. KenLM: Faster and Smaller Language Model Queries. In Proceedings
of EMNLP. 2011.

Heaőeld, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P. Scalable Modified
Kneser-Ney Language Model Estimation. In Proceedings of ACL. 2013.

Hearst, M. A. TextTiling: Segmenting Text Into Multi-Paragraph Subtopic Passages.
In Computational Linguistics, 1997.

Helwig, N. E. Linear Mixed-Effects Regression. 2017.

Herbrich, R., Graepel, T., and Obermayer, K. Support Vector Learning for Ordinal
Regression. In Proceedings of ICANN. 1999.

Hieber, F. and Riezler, S. Bag-of-Words Forced Decoding for Cross-Lingual Infor-
mation Retrieval. In Proceedings of NAACL-HLT. 2015.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the Dimensionality of Data with
Neural Networks. In Science, 2006.

Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory. In Neural Compu-
tation, 1997.

Hoerl, A. E. and Kennard, R. W. Ridge Regression: Biased Estimation for
Nonorthogonal Problems. In Technometrics, 1970.

Hopkins, M. and Langmead, G. SCFG Decoding without Binarization. In Proceed-
ings of EMNLP. 2010.

Hopkins, M. and May, J. Tuning as Ranking. In Proceedings of EMNLP. 2011.

Hu, C. Collaborative Translation by Monolingual Users. In Proceedings of CHI.
2009.

Hu, C., Bederson, B. B., and Resnik, P. Translation by Iterative Collaboration
Between Monolingual Users. In Proceedings of Graphics Interface. 2010.

Huang, L. Advanced Dynamic Programming in Semiring and Hypergraph Frame-
works. In Proceedings of COLING. 2008.

223

Bibliography

Huang, L. and Chiang, D. Better k-Best Parsing. In Proceedings of IWPT. 2005.

Huang, L. and Chiang, D. Forest Rescoring: Faster Decoding with Integrated
Language Models. In Proceedings of ACL. 2007.

Huang, L., Fayong, S., and Guo, Y. Structured Perceptron with Inexact Search. In
Proceedings of NAACL-HLT. 2012.

Hutchins, J. Looking Back to 1952: The First MT Conference. In Theoretical and
Methodogical Issues in Machine Translation, 1997.

Hutchins, J. Machine Translation: A Concise History. In Computer Aided
Translation: Theory and Practice, 2007.

Hutchins, W. J. and Somers, H. L. An Introduction to Machine Translation, vol.
362. Academic Press London, 1992.

IWSLT. International Workshop on Spoken Language Translation, IWSLT. ISCA
Speech, 2004.

IWSLT. International Workshop on Spoken Language Translation, IWSLT. ISCA
Speech, 2013.

IWSLT. International Workshop on Spoken Language Translation, IWSLT. ISCA
Speech, 2015.

Jääskeläinen, R. Think-Aloud Protocol. In Handbook of Translation Studies, 2010.

Jakobsen, A. L. Logging Target Text Production with Translog. In Copenhagen
Studies in Language, 1999.

Jehl, L., Simianer, P., Hitschler, J., and Riezler, S. The Heidelberg University
English-German Translation System for IWSLT 2015. In Proceedings of IWSLT.
Da Nang, Vietnam, 2015.

Jiang, X., Hu, Y., and Li, H. A Ranking Approach to Keyphrase Extraction. In
Proceedings of SIGIR. 2009.

Joachims, T. Optimizing Search Engines Using Clickthrough Data. In Proceedings
of SIGKDD. 2002.

Joachims, T. Training Linear SVMs in Linear Time. In Proceedings of SIGKDD.
2006.

Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat,
N., Viégas, F. B., Wattenberg, M., Corrado, G., Hughes, M., and Dean, J.
Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot
Translation. In CoRR, 2016.

224

Bibliography

Johnson, R., King, M., and des Tombe, L. Eurotra: A Multilingual System Under
Development. In Computational Linguistics, 1985.

Judd, C. M., Westfall, J., and Kenny, D. A. Treating Stimuli as a Random Factor
in Social Psychology: A New and Comprehensive Solution to a Pervasive but
Largely Ignored Problem. In Journal of Personality and Social Psychology, 2012.

Jung, L. Deutsche Sprachprüfung Für Den Hochschulzugang Ausländischer Studi-
enbewerber (DSH), vol. 1. Hueber, 1995.

Kalchbrenner, N. and Blunsom, P. Recurrent Continuous Translation Models. In
Proceedings of EMNLP. 2013.

Karimova, S., Simianer, P., and Riezler, S. Offline Extraction of Overlapping
Phrases for Hierarchical Phrase-Based Translation. In Proceedings of IWSLT.
Lake Tahoe, USA, 2014.

Karimova, S., Simianer, P., and Riezler, S. A User-Study on Online Adapta-
tion of Neural Machine Translation to Human Post-Edits. In arXiv preprint
arXiv:1712.04853, 2017.

Kay, M. The Proper Place of Men and Machines in Language Translation. In
Machine Translation, 1997.

Kay, M. and Martins, G. R. The MIND System. Tech. rep., RAND Corporation,
1970.

Kendall, M. G. A New Measure of Rank Correlation. In Biometrika, 1938.

Kernighan, M. D., Church, K. W., and Gale, W. A. A Spelling Correction Program
Based on a Noisy Channel Model. In Proceedings of COLING. 1990.

Kim, H.-W. and Kankanhalli, A. Investigating User Resistance to Information
Systems Implementation: A Status Quo Bias Perspective. In MIS quarterly,
2009.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. In CoRR,
2014.

Klein, D. and Manning, C. D. Parsing and Hypergraphs. In New Developments in
Parsing Technology, 2004.

Kneser, R. and Ney, H. Improved Backing-Off for M-gram Language Modeling. In
Proceedings of ICASSP. 1995.

Knight, K. Decoding Complexity in Word-Replacement Translation Models. In
Computational Linguistics, 1999.

225

Bibliography

Knowles, R. and Koehn, P. Neural Interactive Translation Prediction. In Proceed-
ings of AMTA. 2016.

Koehn, P. Pharaoh: A Beam Search Decoder for Phrase-Based Statistical Machine
Translation Models. In Machine Translation: From Real Users to Research,
2004a.

Koehn, P. Statistical Significance Tests for Machine Translation Evaluation. In
Proceedings of EMNLP. 2004b.

Koehn, P. Europarl: A Parallel Corpus for Statistical Machine Translation. In
Proceedings of MT Summit X. 2005.

Koehn, P. A Process Study of Computer-Aided Translation. In Machine Translation,
2009.

Koehn, P. Enabling Monolingual Translators: Post-Editing vs. Options. In Pro-
ceedings of NAACL-HLT. 2010.

Koehn, P. and Germann, U. The Impact of Machine Translation Quality on Human
Post-Editing. In Proceedings of the Workshop on Humans and Computer-Assisted
Translation. 2014.

Koehn, P. and Haddow, B. Interactive Assistance to Human Translators Using
Statistical Machine Translation Methods. In Proceedings of MT Summit XII.
2009.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.,
and Herbst, E. Moses: Open Source Toolkit for Statistical Machine Translation.
In Proceedings of ACL (Interactive Poster and Demonstration Sessions). 2007.

Koehn, P. and Knight, K. Empirical Methods for Compound Splitting. In Proceed-
ings of EACL. 2003.

Koehn, P. and Knowles, R. Six Challenges for Neural Machine Translation. In
arXiv preprint arXiv:1706.03872, 2017.

Koehn, P. and Monz, C. Manual and Automatic Evaluation of Machine Translation
Between European Languages. In Proceedings of WMT. 2006a.

Koehn, P. and Monz, C. Proceedings on the Workshop on Statistical Machine
Translation. In Proceedings of WMT. 2006b.

Koehn, P., Och, F. J., and Marcu, D. Statistical Phrase-Based Translation. In
Proceedings of NAACL-HLT. 2003.

226

Bibliography

Koehn, P. and Schroeder, J. Experiments in Domain Adaptation for Statistical
Machine Translation. In Proceedings of WMT. 2007.

Koglin, A. An Empirical Investigation of Cognitive Effort Required to Post-Edit
Machine Translated Metaphors Compared to the Translation of Metaphors. In
Translation & Interpreting, 2015.

Kohavi, R. and John, G. H. Wrappers for Feature Subset Selection. In Artiőcial
Intelligence, 1997.

Koponen, M. Assessing Machine Translation Quality with Error Analysis. In
Electronic Proceedings of the KäTu Symposium on Translation and Interpreting
Studies. 2010.

Koponen, M. Comparing Human Perceptions of Post-Editing Effort with Post-
Editing Operations. In Proceedings of WMT. 2012.

Koponen, M. This Translation Is Not Too Bad: An Analysis of Post-Editor Choices
in a Machine Translation Post-Editing Task. In Proceedings of the Workshop on
Post-editing Technology and Practice. 2013.

Koponen, M. Is Machine Translation Post-Editing Worth the Effort? A Survey of
Research Into Post-Editing and Effort. In The Journal of Specialised Translation,
2016.

Koponen, M., Aziz, W., Ramos, L., and Specia, L. Post-Editing Time as a Measure
of Cognitive Effort. In , 2012.

Krings, H. P. Texte Reparieren: Empirische Untersuchungen Zum Prozeß Der
Nachredaktion Von Maschinen-Übersetzungen. Narr, 1997.

Krings, H. P. Repairing Texts: Empirical Investigations of Machine Translation
Post-Editing Processes, vol. 5. Kent State University Press, 2001.

Kudo, T. MeCab: Yet Another Part-of-Speech and Morphological Analyzer. Tech.
rep., 2005.

Kumar, S., Macherey, W., Dyer, C., and Och, F. Efficient Minimum Error Rate
Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and
Lattices. In Proceedings of ACL-IJCNLP. 2009.

Lacruz, I., Denkowski, M., and Lavie, A. Cognitive Demand and Cognitive Effort
in Post-Editing. In Proceedings of AMTA. 2014.

Lacruz, I., Shreve, G. M., and Angelone, E. Average Pause Ratio as an Indicator of
Cognitive Effort in Post-Editing: A Case Study. In Proceedings of the Workshop
on Post-editing Technology and Practice. 2012.

227

Bibliography

Lagoudaki, E. Translation Editing Environments. In MT Summit XII: Workshop
on Beyond Translation Memories. 2009.

Laird, N. M. and Ware, J. H. Random-Effects Models for Longitudinal Data. In
Biometrics, 1982.

Lal, T., Chapelle, O., Weston, J., and Elisseeff, A. Embedded Methods. In Feature
Extraction: Foundations and Applications. Springer, Berlin, Germany, 2006.

Lambert, P. and Banchs, R. Tuning Machine Translation Parameters with SPSA.
In Proceedings of IWSLT. 2006.

Langlais, P., Foster, G., and Lapalme, G. TransType: A Computer-Aided Transla-
tion Typing System. In Proceedings of NAACL-ANLP Workshop on Embedded
Machine Translation Systems. 2000a.

Langlais, P., Sauvé, S., Foster, G. F., Macklovitch, E., and Lapalme, G. Evaluation
of TransType, a Computer-Aided Translation Typing System: A Comparison of
a Theoretical- and a User-Oriented Evaluation Procedures. In Proceedings of
LREC. 2000b.

Läubli, S., Fishel, M., Massey, G., Ehrensberger-Dow, M., and Volk, M. Assessing
Post-Editing Efficiency in a Realistic Translation Environment. In Proceedings
of the Workshop on Post-editing Technology and Practice. 2013.

Lavie, A., Sagae, K., and Jayaraman, S. The Significance of Recall in Automatic
Metrics for MT Evaluation. In Proceedings of AMTA. 2004.

LDC. Linguistic Data Annotation Specification: Assessment of Fluency and
Adequacy in Translations. Tech. rep., Linguistic Data Consortium, 2005.

Le, Q. V. and Smola, A. J. Direct Optimization of Ranking Measures. In CoRR,
2007.

Lee, C.-P. and Lin, C.-J. Large-Scale Linear Ranksvm. In Neural Computation,
2014.

Leusch, G., Matusov, E., and Ney, H. Complexity of Finding the BLEU-optimal
Hypothesis in a Confusion Network. In Proceedings of EMNLP. 2008.

Levenberg, A., Callison-Burch, C., and Osborne, M. Stream-Based Translation
Models for Statistical Machine Translation. In Proceedings of NAACL-HLT.
2010.

Levenberg, A. and Osborne, M. Stream-Based Randomised Language Models for
SMT. In Proceedings of EMNLP. 2009.

228

Bibliography

Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. In Soviet Physics Doklady. 1966.

Li, H. Learning to Rank for Information Retrieval and Natural Language Processing.
Morgan & Claypool Publishers, 2011a.

Li, H. A Short Introduction to Learning to Rank. In IEICE Transactions, 2011b.

Liang, P., Bouchard-Côté, A., Klein, D., and Taskar, B. An End-to-End Discrim-
inative Approach to Machine Translation. In Proceedings of COLING/ACL.
2006a.

Liang, P. and Klein, D. Online EM for Unsupervised Models. In Proceedings of
NAACL HLT. 2009.

Liang, P., Taskar, B., and Klein, D. Alignment by Agreement. In Proceedings of
NAACL-HLT. 2006b.

Lin, C.-Y. and Och, F. J. ORANGE: A Method for Evaluating Automatic Evaluation
Metrics for Machine Translation. In Proceedings of COLING. 2004.

Lita, L. V., Ittycheriah, A., Roukos, S., and Kambhatla, N. Truecasing. In
Proceedings of ACL. 2003.

Liu, L. and Huang, L. Search-Aware Tuning for Machine Translation. In Proceed-
ings of EMNLP. 2014.

Liu, L., Zhao, T., Watanabe, T., and Sumita, E. Tuning SMT with a Large Number
of Features via Online Feature Grouping. In Proceedings of IJCNLP. 2013.

Liu, T.-Y. Learning to Rank for Information Retrieval. In Foundations and Trends
in Information Retrieval, 2009.

Lo, S. and Andrews, S. To transform or not to transform: Using generalized linear
mixed models to analyse reaction time data. In Frontiers in Psychology, 2015.

Lopez, A. Hierarchical Phrase-Based Translation with Suffix Arrays. In Proceedings
of EMNLP-CoNLL. 2007.

Lopez, A. Translation as Weighted Deduction. In Proceedings of EACL. 2009.

López-Salcedo, F.-J., Sanchis-Trilles, G., and Casacuberta, F. Online Learning
of Log-Linear Weights in Interactive Machine Translation. In Proeecings of
IberSPEECH. 2012.

Luce, R. D. Individual Choice Behavior a Theoretical Analysis. John Wiley and
sons, 1959.

229

Bibliography

Luong, M.-T. and Manning, C. D. Stanford Neural Machine Translation Systems
for Spoken Language Domains. In Proceedings of IWSLT. 2015.

Macherey, W., Och, F. J., Thayer, I., and Uszkoreit, J. Lattice-Based Minimum
Error Rate Training for Statistical Machine Translation. In Proceedings of
EMNLP. 2008.

Macklovitch, E. TransType2: The Last Word. In Proceedings of LREC. 2006.

Mairal, J. and Yu, B. Complexity Analysis of the Lasso Regularization Path. In
arXiv preprint arXiv:1205.0079, 2012.

Manning, C. D., Raghavan, P., and Schütze, H. Introduction to Information
Retrieval. Cambridge University Press, New York City, NY, USA, 2008.

Marie, B. and Max, A. Touch-Based Pre-Post-Editing of Machine Translation
Output. In Proceedings of EMNLP. 2015.

Martínez-Gómez, P., Sanchis-Trilles, G., and Casacuberta, F. Online Learning
via Dynamic Reranking for Computer Assisted Translation. In Computational
Linguistics and Intelligent Text Processing, 2011.

Martínez-Gómez, P., Sanchis-Trilles, G., and Casacuberta, F. Online Adaptation
Strategies for Statistical Machine Translation in Post-Editing Scenarios. In
Pattern Recognition, 2012.

Martins, A. F. T., Gimpel, K., Smith, N. A., Xing, E. P., Figueiredo, M. A. T.,
and Aguiar, P. M. Q. Aggressive Online Learning of Structured Classifiers. Tech.
rep., School of Computer Science, Carnegie Mellon University, Pittsburgh PA,
USA, 2010.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T.
Structured Sparsity in Structured Prediction. In Proceedings of EMNLP. 2011.

Marton, Y. and Resnik, P. Soft Syntactic Constraints for Hierarchical Phrased-
Based Translation. In Proceedings of ACL. 2008.

Mathur, P. and Cettolo, M. Optimized MT Online Learning in Computer Assisted
Translation. In Workshop on Interactive and Adaptive Machine Translation.
2014.

Mathur, P., Cettolo, M., Federico, M., and de Souza, J. G. Online Multi-User
Adaptive Statistical Machine Translation. In Proceedings of AMTA. 2014.

Mathur, P., Cettolo, M., Federico, M., and Kessler, F.-F. B. Online Learning
Approaches in Computer Assisted Translation. In Proceedings of WMT. 2013.

230

Bibliography

Mays, E., Damerau, F. J., and Mercer, R. L. Context Based Spelling Correction.
In Information Processing & Management, 1991.

McDonald, R., Hall, K., and Mann, G. Distributed Training Strategies for the
Structured Perceptron. In Proceedings of NAACL-HLT. 2010.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. Non-Projective Dependency
Parsing Using Spanning Tree Algorithms. In Proceedings of EMNLP. 2005.

Metzler, D. and Kanungo, T. Machine Learned Sentence Selection Strategies for
Query-Biased Summarization. In SIGIR Learning to Rank Workshop. 2008.

Mikolov, T., Karaőát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. Recurrent
Neural Network Based Language Model. In Proceedings of Interspeech. 2010.

Mirkin, S. and Cancedda, N. Assessing Quick Update Methods of Statistical
Translation Models. In Proceedings of IWSLT. 2013.

Mitchell, L., Roturier, J., and O’Brien, S. Community-Based Post-Editing of
Machine-Translated Content: Monolingual vs. Bilingual. In Proceedings of MT
Summit XIV. 2013.

Mizumoto, T. and Matsumoto, Y. Discriminative Reranking for Grammatical Error
Correction with Statistical Machine Translation. In Proceedings of NAACL-HLT.
2016.

Mladenić, D. Feature Selection for Dimensionality Reduction. In Proceedings of
Subspace, Latent Structure and Feature Selection: Statistical and Optimization
Perspectives Workshop. 2006.

Moore, R. C. and Quirk, C. Random Restarts in Minimum Error Rate Training
for Statistical Machine Translation. In Proceedings of COLING. 2008.

Moorkens, J. and O’Brien, S. Post-Editing Evaluations: Trade-Offs Between Novice
and Professional Participants. In Proceedings of EAMT, 2015.

Mozer, M. C. A Focused Back-Propagation Algorithm for Temporal Pattern Recog-
nition. In Complex Systems, 1989.

Nakazawa, T., Mino, H., Ding, C., Goto, I., Neubig, G., Kurohashi, S., and Sumita,
E. Overview of the 3rd Workshop on Asian Translation. In Proceedings of the
Workshop on Asian Translation, 2016.

Nakazawa, T., Mino, H., Goto, I., Kurohashi, S., and Sumita, E. Overview of the
1st Workshop on Asian Translation. In Proceedings of the Workshop on Asian
Translation. 2014.

231

Bibliography

Nakov, P., Guzman, F., and Vogel, S. Optimizing for Sentence-Level BLEU+1
Yields Short Translations. In Proceedings of COLING. 2012.

Nakov, P., Guzmán, F., and Vogel, S. A Tale About PRO and Monsters. In
Proceedingsof ACL. 2013.

Nepveu, L., Lapalme, G., Langlais, P., and Foster, G. Adaptive Language and
Translation Models for Interactive Machine Translation. In Proceedings of
EMNLP. 2004.

Neubig, G. Lamtram: A Toolkit for Language and Translation Modeling Using
Neural Networks. Tech. rep., Carnegie Mellon University Pittsburgh, USA, 2015.

Neubig, G. Lexicons and Minimum Risk Training for Neural Machine Translation:
NAIST-CMU at Wat2016. In arXiv preprint arXiv:1610.06542, 2016.

Neubig, G. Neural Machine Translation and Sequence-to-Sequence Models: A
Tutorial. In arXiv preprint arXiv:1703.01619, 2017.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos,
A., Ballesteros, M., Chiang, D., Clothiaux, D., Cohn, T. et al. DyNet: The
Dynamic Neural Network Toolkit. In arXiv preprint arXiv:1701.03980, 2017.

Ney, H., Essen, U., and Kneser, R. On Structuring Probabilistic Dependences in
Stochastic Language Modelling. In Computer Speech & Language, 1994.

Niehues, J., DO, Q.-K., Allauzen, A., and Waibel, A. ListNet-Based MT Rescoring.
In Proceedings of WMT. 2015.

Nitzke, J. Monolingual Post-Editing: An Exploratory Study on Research Behaviour
and Target Text Quality. In Eyetracking and Applied Linguistics, 2016.

Obozinski, G., Taskar, B., and Jordan, M. I. Joint Covariate Selection and
Joint Subspace Selection for Multiple Classification Problems. In Statistics and
Computing, 2010.

O’Brien, S. and Moorkens, J. Towards Intelligent Post-Editing Interfaces. In
Proceedings of the XXth FIT World Congress. 2014.

Och, F. J. Minimum Error Rate Training in Statistical Machine Translation. In
Proceedings of ACL. 2003.

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, A., Kenji Fraser,
Kumar, S., Shen, D., Libin Smith, Eng, K., Jain, V., Jin, Z., and Radev, D.
Syntax for Statistical Machine Translation: Final Report of John Hopkins 2003
Summer Workshop. Tech. rep., John Hopkins University, Baltimore, USA, 2003a.

232

Bibliography

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar,
S., Shen, L., Smith, D., Eng, K. et al. A Smorgasbord of Features for Statistical
Machine Translation. In Proceedings of NAACL-HLT. 2004.

Och, F. J. and Ney, H. Discriminative Training and Maximum Entropy Models for
Statistical Machine Translation. In Proceedings of ACL. 2002.

Och, F. J. and Ney, H. A Systematic Comparison of Various Statistical Alignment
Models. In Computational Linguistics, 2003.

Och, F. J., Tillmann, C., Ney, H. et al. Improved Alignment Models for Statistical
Machine Translation. In Proceedings of the Joint SIGDAT Conference On
Empirical Methods in Natural Language Processing and Very Large Corpora.
1999.

Och, F. J., Ueffing, N., and Ney, H. An Efficient A* Search Algorithm for Statistical
Machine Translation. In Proceedings of the Workshop on Data-Driven Methods
in Machine Translation. 2001.

Och, F. J., Zens, R., and Ney, H. Efficient Search for Interactive Statistical Machine
Translation. In Proceedings of EACL. 2003b.

Orr, D. B. and Small, V. H. Comprehensibility of Machine-Aided Translations
of Russian Scientific Documents. In Mechanical Translation & Computational
Linguistics, 1967.

Orsnes, B., Music, B., and Maegaard, B. PaTrans: A Patent Translation System.
In Proceedings of COLING. 1996.

Ortiz-Martínez, D. Online Learning for Statistical Machine Translation. In Com-
putational Linguistics, 2016.

Ortiz-Martınez, D., Benedı, J. M., and Casacuberta, F. Beyond Prefix-Based
Interactive Translation Prediction. In Proceedings of CoNLL, 2016.

Ortiz-Martínez, D., García-Varea, I., and Casacuberta, F. Interactive Machine
Translation Based on Partial Statistical Phrase-Based Alignments. In Proceedings
of RANLP. 2009.

Ortiz-Martínez, D., García-Varea, I., and Casacuberta, F. Online Learning for
Interactive Statistical Machine Translation. In Proceedings of NAACL-HLT.
2010.

Ortiz-Martínez, D., Leiva, L. A., Alabau, V., García-Varea, I., and Casacuberta, F.
An Interactive Machine Translation System with Online Learning. In Proceedings
of ACL-HLT (Systems Demonstrations). 2011.

233

Bibliography

O’Brien, S. Methodologies for Measuring the Correlations Between Post-Editing
Effort and Machine Translatability. In Machine Translation, 2005.

O’Brien, S. Towards Predicting Post-Editing Productivity. In Machine Translation,
2011.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceedings of COLING. 2002.

Pareek, H. and Ravikumar, P. A Representation Theory for Ranking Functions. In
Proceedings of NIPS. 2014.

Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K. English Gigaword Fifth
Edition. Tech. rep., Linguistic Data Consortium, Philadelphia, USA, 2011.

Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. In
Proceedings of the Royal Society of London, 1895.

Peris, Á., Cebrián, L., and Casacuberta, F. Online Learning for Neural Machine
Translation Post-Editing. In CoRR, 2017a.

Peris, Á., Domingo, M., and Casacuberta, F. Interactive Neural Machine Transla-
tion. In Computer Speech & Language, 2017b.

Perkins, S., Lacker, K., and Theiler, J. Grafting: Fast, Incremental Feature
Selection by Gradient Descent in Function Space. In Machine Learning Research,
2003.

Pierce, J. R. and Carroll, J. B. Language and Machines: Computers in Translation
and Linguistics. National Academy of Sciences/National Research Council, 1966.

Pinnis, M., Kalnins, R., Skadins, R., and Skadina, I. What Can We Really Learn
From Post-Editing. In Proceedings of AMTA, 2016.

Plackett, R. L. The Analysis of Permutations. In Applied Statistics, 1975.

Plitt, M. and Masselot, F. A Productivity Test of Statistical Machine Transla-
tion Post-Editing in a Typical Localisation Context. In Prague Bulleting of
Mathematical Linguistics, 2010.

Popovic, M., Lommel, A., Burchardt, A., Avramidis, E., and Uszkoreit, H. Rela-
tions Between Different Types of Post-Editing Operations, Cognitive Effort and
Temporal Effort. In Proceedings of EAMT. 2014.

Pouliquen, B., Mazenc, C., and Iorio, A. Tapta: A User-Driven Translation System
for Patent Documents Based on Domain-Aware Statistical Machine Translation.
In Proceedings of EAMT. 2011.

234

Bibliography

Powell, M. J. An Efficient Method for Finding the Minimum of a Function of
Several Variables without Calculating Derivatives. In The Computer Journal,
1964.

Quattoni, A., Carreras, X., Collins, M., and Darrell, T. An Efficient Projection for
l1,∞ Regularization. In Proceedings of ICML. 2009.

Quenouille, M. H. Notes on Bias in Estimation. In Biometrika, 1956.

Rafferty, A. N. and Manning, C. D. Parsing Three German Treebanks: Lexicalized
and Unlexicalized Baselines. In Proceedings of the Workshop on Parsing German.
2008.

Reiŕer, E. The First Conference on Mechanical Translation. In Mechanical
Translation, 1954.

Riedel, S. and Clarke, J. Revisiting Optimal Decoding for Machine Translation
IBM Model 4. In Proceedings of NAACL-HLT (Short Papers). 2009.

Riezler, S. and Maxwell, J. T. On Some Pitfalls in Automatic Evaluation and
Significance Testing for MT. In Proceedings of the ACL Workshop on Intrinsic and
Extrinsic Evaluation Measures for Machine Translation and/or Summarization.
2005.

Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. In Psychological Review, 1958.

Rosti, A.-V. I., Zhang, B., Matsoukas, S., and Schwartz, R. BBN System Description
for WMT10 System Combination Task. In Proceedings of WMT/MetricsMATR.
2010.

Roturier, J., Mitchell, L., Silva, D., and Park, B. B. The ACCEPT Post-Editing
Environment: A Flexible and Customisable Online Tool to Perform and Analyse
Machine Translation Post-Editing. In Proceedings of the Workshop on Post-
editing Technology and Practice. 2013.

Royston, J. P. An extension of Shapiro and Wilk’s W test for normality to large
samples. In Applied Statistics, 1982.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. et al. Learning Representations
by Back-Propagating Errors. In Cognitive Modeling, 1988.

Ryan, J. P. SYSTRAN: A Machine Translation System to Meet User Needs. In
Machine Translation Summit. 1989.

Sakaguchi, K., Post, M., and Van Durme, B. Efficient Elicitation of Annotations
for Human Evaluation of Machine Translation. In Proceedings of WMT. 2014.

235

Bibliography

Sakai, I. Syntax in Universal Translation. Her Magesty’s Stationary Office, 1962.

Salton, G., Wong, A., and Yang, C. S. A Vector Space Model for Automatic
Indexing. In Communications of ACM, 1975.

Sanchez-Torron, M. and Koehn, P. Machine Translation Quality and Post-Editor
Productivity. In Proceedings of AMTA, 2016.

Sanchis-Trilles, G., Alabau, V., Buck, C., Carl, M., Casacuberta, F., García-
Martínez, M., Germann, U., González-Rubio, J., Hill, R. L., Koehn, P. et al.
Interactive Translation Prediction vs. Conventional Post-Editing in Practice: A
Study with the CasMaCat Workbench. In Machine Translation, 2014.

Sanchis-Trilles, G., González, M.-T., Casacuberta, F., Vidal, E., and Civera, J.
Introducing Additional Input Information Into Interactive Machine Translation
Systems. In Machine Learning for Multimodal Interaction, 2008.

Sankaran, B., Razmara, M., Farzindar, A., Khreich, W., Popowich, F., and Sarkar,
A. Domain Adaptation Techniques for Machine Translation and Their Evaluation
in a Real-World Setting. In Proceedings of Advances in Artiőcial Intelligence.
2012.

Scheepers, T. and Schulz, P. Interactive Neural Translation Assistance for Human
Translators. 2016.

Schmidt, M., Fung, G., and Rosales, R. Fast Optimization Methods for L1 Regu-
larization: A Comparative Study and Two New Approaches. In Proceedings of
ECML. 2007.

Schmidt, M., Fung, G., and Rosaless, R. Optimization Methods for L1-
Regularization. Tech. rep., University of British Columbia, Canada, 2009.

Schuster, M. and Nakajima, K. Japanese and Korean Voice Search. In Proceedings
of ICASSP. 2012.

Schuster, M. and Paliwal, K. K. Bidirectional Recurrent Neural Networks. In IEEE
Transactions on Signal Processing, 1997.

Schwartz, L. Monolingual Post-Editing by a Domain Expert Is Highly Effective for
Translation Triage. In Proceedings of the Workshop on Post-editing Technology
and Practice. 2014.

Schwartz, L., Anderson, T., Gwinnup, J., and Young, K. Machine Translation and
Monolingual Postediting: The AFRL WMT-14 System. In Proceedings of WMT.
2014.

236

Bibliography

Schwartz, L., Lacruz, I., and Bystrova, T. Effects of Word Alignment Visualization
on Post-Editing Quality & Speed. In Proceedings of MT Summit XV. 2015.

Sculley, D. Combined Regression and Ranking. In Proceedings of SIGKDD. 2010.

Sekino, K. An Investigation of the Relevance-Theoretical Approach to Cognitive
Effort in Translation and the Post-Editing Process. In Translation & Interpreting,
2015.

Sennrich, R. A CYK+ Variant for SCFG Decoding without a Dot Chart. In
Proceedings of SSST@ EMNLP. 2014.

Sennrich, R., Haddow, B., and Birch, A. Neural Machine Translation of Rare
Words with Subword Units. In arXiv preprint arXiv:1508.07909, 2015.

Sennrich, R., Haddow, B., and Birch, A. Edinburgh Neural Machine Translation
Systems for WMT 16. In Proceedings of WMT. 2016.

Serrano, N., Andres-Ferrer, J., and Casacuberta, F. On a Kernel Regression
Approach to Machine Translation. In Pattern Recognition and Image Analysis,
2009.

Setiawan, H. and Zhou, B. Discriminative Training of 150 Million Translation
Parameters and Its Application to Pruning. In Proceedings of NAACL-HLT.
2013.

Shannon, C. A Mathematical Theory of Communication. In Bell System Technical
Journal, 1948.

Shaphiro, S. S. and Wilk, M. B. An Analysis of Variance Test for Normality. In
Biometrika, 1965.

Sharmin, S., Špakov, O., Räihä, K.-J., and Jakobsen, A. L. Effects of Time Pressure
and Text Complexity on Translators’ Fixations. In Proceedings of the Symposium
on Eye Tracking Research & Applications. 2008.

Shen, L. and Joshi, A. K. Flexible Margin Selection for Reranking with Full Pairwise
Samples. In Proceedings of IJCNLP. 2004.

Shen, L. and Joshi, A. K. Ranking and Reranking with Perceptron. In Machine
Learning, 2005.

Shen, L., Sarkar, A., and Och, F. J. Discriminative Reranking for Machine
Translation. In Proceedings of NAACL-HLT. 2004.

Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. Minimum Risk
Training for Neural Machine Translation. In CoRR, 2015.

237

Bibliography

Shterionov, D., Casanellas, P. N. L., Superbo, R., and O’Dowd, T. Empirical
Evaluation of NMT and PBSMT Quality for Large-Scale Translation Production.
In Proceedings of EAMT. 2017.

Simard, M. and Foster, G. Pepr: Post-Edit Propagation Using Phrase-Based
Statistical Machine Translation. In Proceedings of MT Summit XIV, 2013.

Simard, M., Goutte, C., and Isabelle, P. Statistical Phrase-Based Post-Editing.
2007.

Simianer, P. Tuning SMT on the Training Set. Master’s thesis, University of
Heidelberg, 2012.

Simianer, P., Jehl, L., and Riezler, S. The Heidelberg University Machine Transla-
tion Systems for IWSLT2013. In International Workshop on Spoken Language
Translation. Heidelberg, Germany, 2013a.

Simianer, P., Karimova, S., and Riezler, S. A Post-Editing Interface for Immediate
Adaptation in Statistical Machine Translation. In Proceedings of COLING
(System Demonstrations). Osaka, Japan, 2016.

Simianer, P. and Riezler, S. Multi-Task Learning for Improved Discriminative
Training in SMT. In Proceedings of WMT. Soőa, Bulgaria, 2013.

Simianer, P., Riezler, S., and Dyer, C. Joint Feature Selection in Distributed Stochas-
tic Learning for Large-Scale Discriminative Training in SMT. In Proceedings of
ACL. Jeju, Korea, 2012.

Simianer, P., Stupperich, G., Jehl, L., Wäschle, K., Sokolov, A., and Riezler, S. The
HDU Discriminative SMT System for Constrained Data PatentMT at NTCIR10.
In Proceedings of NTCIR. Tokyo, Japan, 2013b.

Simianer, P., Wäschle, K., and Riezler, S. Multi-Task Minimum Error Rate Training
for SMT. In The Prague Bulletin of Mathematical Linguistics, 2011.

Singhal, A. et al. Modern Information Retrieval: A Brief Overview. In IEEE Data
Eng. Bull., 2001.

Skadin
,
š, R., Purin

,
š, M., Skadin

,
a, I., and Vasil

,
jevs, A. Evaluation of SMT in

Localization to Under-Resourced Inflected. In Proceedings of EAMT. 2011.

Skiena, S. Dijkstra’s Algorithm. In Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica, 1990.

Smith, D. A. and Eisner, J. Minimum Risk Annealing for Training Log-Linear
Models. In Proceedings of COLING/ACL. 2006.

238

Bibliography

Smith, J. R., Saint-Amand, H., Plamada, M., Koehn, P., Callison-Burch, C., and
Lopez, A. Dirt Cheap Web-Scale Parallel Text from the Common Crawl. In
Proceedings of ACL. 2013.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. A Study
of Translation Edit Rate with Targeted Human Annotation. In Proceedings of
AMTA. 2006.

Snover, M., Madnani, N., Dorr, B. J., and Schwartz, R. Fluency, Adequacy, or
HTER?: Exploring Different Human Judgments with a Tunable MT Metric. In
Proceedings of WMT. 2009.

Sùgaard, A., Johannsen, A., Plank, B., Hovy, D., and Alonso, H. M. What’s in a
p-Value in NLP? In Proceedings of CoNLL. 2014.

Sokolov, A., Wisniewski, G., and Yvon, F. Computing Lattice BLEU Oracle Scores
for Machine Translation. In Proceedings of EACL. 2012a.

Sokolov, A., Wisniewski, G., and Yvon, F. Non-Linear N-Best Reranking with Few
Features. In Proceedings of AMTA. San Diego, CA, 2012b.

Sokolov, A., Wisniewski, G., and Yvon, F. Lattice BLEU Oracles in Machine
Translation. In ACM Transactions on Speech and Language Processing (TSLP),
2013.

Sokolov, A. and Yvon, F. Minimum Error Rate Semiring. In Proceedings of EAMT.
2011.

Somers, H. Computers and Translation: A Translator’s Guide, vol. 35. John
Benjamins Publishing, 2003.

Sparck Jones, K. A Statistical Interpretation of Term Specificity and its Application
in Retrieval. In Journal of documentation, 1972.

Spearman, C. The Proof and Measurement of Association Between Two Things.
In The American Journal of Psychology, 1904.

Specia, L., Turchi, M., Cancedda, N., Dymetman, M., and Cristianini, N. Estimat-
ing the Sentence-Level Quality of Machine Translation Systems. In Proceedings
of EAMT. 2009.

Spence Green, D. C. and Manning, C. D. Phrasal: A Toolkit for New Directions in
Statistical Machine Translation. In Proceedings of WMT. 2014.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: A Simple Way to Prevent Neural Networks From Overfitting. In
Journal of Machine Learning Research, 2014.

239

Bibliography

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tuős, D., and
Varga, D. The JRC-Acquis: A Multilingual Aligned Parallel Corpus with 20+
Languages. In CoRR, 2006.

Stolcke, A. SRILM - An Extensible Language Modeling Toolkit. In Proceedings of
Interspeech. 2002.

Sturgeon, D. and Lee, J. S. Translation Quality and Effort: Options versus
Post-Editing. In Proceedings of ICNLP. 2015.

Stymne, S. and Ahrenberg, L. On the Practice of Error Analysis for Machine
Translation Evaluation. In Proceedings of LREC. 2012.

Su, K.-Y., Wu, M.-W., and Chang, J.-S. A New Quantitative Quality Measure for
Machine Translation Systems. In Proceedings of COLING. 1992.

Sundermeyer, M., Schlüter, R., and Ney, H. On the Estimation of Discount
Parameters for Language Model Smoothing. In Proceedings of Interspeech. 2011.

Surdeanu, M., Ciaramita, M., and Zaragoza, H. Learning to Rank Answers on
Large Online QA Collections. In Proceedings of ACL. 2008.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to Sequence Learning with Neural
Networks. In Proceedings of NIPS. 2014.

Tan, L., Dehdari, J., and van Genabith, J. An Awkward Disparity Between
BLEU/RIBES Scores and Human Judgements in Machine Translation. In
Proceedings of the Workshop on Asian Translation. 2015.

Tan, M., Xia, T., Wang, S., and Zhou, B. A Corpus Level MIRA Tuning Strategy
for Machine Translation. In Proceedings of EMNLP. 2013.

Tatsumi, M. Correlation Between Automatic Evaluation Metric Scores, Post-
Editing Speed, and Some Other Factors. In Proceedings of MT Summit XII,
2009.

Tatsumi, M. Post-Editing Machine Translated Text in a Commercial Setting:
Observation and Statistical Analysis. Ph.D. thesis, Dublin City University, 2010.

Teh, Y. W. A Hierarchical Bayesian Language Model Based on Pitman-Yor
Processes. In Proceedings of ACL. 2006.

Thrun, S. and O’Sullivan, J. Discovering Structure in Multiple Learning Tasks:
The TC Algorithm. In Proceedings of ICML. 1996.

Tian, X. Learning to Rank Algorithms and their Application in Machine Translation.
Ph.D. thesis, Wright State University, Ohio, USA, 2015.

240

Bibliography

Tibshirani, R. Regression Shrinkage and Selection via the Lasso. In Journal of the
Royal Statistical Society, Series B, 1994.

Tiedemann, J. and Nygaard, L. The OPUS Corpus - Parallel and Free:
http://logos.uio.no/opus. In Proceedings of LREC. European Language Re-
sources Association, 2004.

Tillmann, C. and Zhang, T. A Localized Prediction Model for Statistical Machine
Translation. In Proceedings of ACL. 2005.

Tillmann, C. and Zhang, T. A Discriminative Global Training Algorithm for
Statistical MT. In Proceedings of COLING. 2006.

Tinsley, J., Way, A., and Sheridan, P. PLuTO: MT for Online Patent Translation.
In Proceedings of AMTA. 2010.

Tromble, R., Kumar, S., Och, F., and Macherey, W. Lattice Minimum Bayes-Risk
Decoding for Statistical Machine Translation. In Proceedings of EMNLP. 2008.

Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. Support Vector Ma-
chine Learning for Interdependent and Structured Output Spaces. In Proceedings
of ICML. 2004.

Tsujii, J.-i. Future Directions of Machine Translation. In Proceedings of COLING.
1986.

Tsuruoka, Y., Tsujii, J., and Ananiadou, S. Stochastic Gradient Descent Training
for L1-Regularized Log-Linear Models with Cumulative Penalty. In Proceedings
of ACL-IJCNLP. 2009.

Turchi, M., Negri, M., Farajian, M. A., and Federico, M. Continuous Learning
From Human Post-Edits for Neural Machine Translation. In The Prague Bulletin
of Mathematical Linguistics, 2017.

Turian, J. P., Shea, L., and Melamed, I. D. Evaluation of Machine Translation
and Its Evaluation. Tech. rep., New York University, New York, USA, 2006.

Underwood, N. L., Mesa-Lao, B., García-Martínez, M., Carl, M., Alabau, V.,
González-Rubio, J., Leiva, L. A., Sanchis-Trilles, G., Ortíz-Martínez, D., and
Casacuberta, F. Evaluating the Effects of Interactivity in a Post-Editing Work-
bench. In Proceedings of LREC. 2014.

Unicode Staff, C. The Unicode Standard: Worldwide Character Encoding. Addison-
Wesley Longman Publishing Co., Inc., 1991.

Uszkoreit, H. Survey of Machine Translation Evaluation. Tech. rep., EuroMatrix
Project, Germany, 2007.

241

Bibliography

Utiyama, M. and Isahara, H. A Japanese-English Patent Parallel Corpus. In
Proceedings of MT Summit XI. 2007.

van der Wees, M., Bisazza, A., Weerkamp, W., and Monz, C. What’s in a Domain?
Analyzing Genre and Topic Differences in Statistical Machine Translation. In
Proceedings of ACL (Short Papers). 2015.

Vapnik, V. Estimation of Dependences Based on Empirical Data. Springer Series
in Statistics. Springer New York, Inc., Secaucus, NJ, USA, 1982.

Vauquois, B. Structures Profondes Et Traduction Automatique. Le Système Du
CETA. In Revue Roumaine De Linguistique, 1968.

Vauquois, B. La Traduction Automatique À Grenoble, vol. 24. Dunod, 1975.

Velldal, E. and Oepen, S. Maximum Entropy Models for Realization Ranking. In
In Proceedings of MT Summit X. 2005.

Vilar, D., Stein, D., and Ney, H. Analysing Soft Syntax Features and Heuristics for
Hierarchical Phrase Based Machine Translation. In Proceedings of IWSLT. 2008.

Vilar, D., Xu, J., d’Haro, L. F., and Ney, H. Error Analysis of Statistical Machine
Translation Output. In Proceedings of LREC. 2006.

Viterbi, A. Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm. In IEEE Transactions on Information Theory, 1967.

Wagner, E. Rapid Post-Editing of Systran. In Tools for the Trade, Translating and
the Computer, 1985.

Wallis, J. Interactive Translation vs Pre-Translation in the Context of Translation
Memory Systems: Investigating the Effects of Translation Method on Productivity,
Quality and Translator Satisfaction. Ph.D. thesis, University of Ottawa (Canada),
2006.

Wang, Y.-Y. and Waibel, A. Decoding Algorithm in Statistical Machine Translation.
In Proceedings of EACL. 1997.

Wang, Z., Shawe-Taylor, J., and Szedmak, S. Kernel Regression Based Machine
Translation. In Proceedings of NAACL-HLT (Short Papers). 2007.

Wäschle, K. and Riezler, S. Analyzing Parallelism and Domain Similarities in the
MAREC Patent Corpus. In Multidisciplinary Information Retrieval, 2012a.

Wäschle, K. and Riezler, S. Structural and Topical Dimensions in Multi-Task
Patent Translation. In Proceedings of EACL. 2012b.

242

Bibliography

Watanabe, T. Optimized Online Rank Learning for Machine Translation. In
Proceedings of NAACL-HLT. 2012.

Watanabe, T., Suzuki, J., Sudoh, K., Tsukada, H., and Isozaki, H. Larger Feature
Set Approach for Machine Translation in IWSLT 2007. In Proceedings of IWSLT.
2007a.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. NTT Statistical Machine
Translation for IWSLT 2006. In Proceedings of IWSLT. 2006.

Watanabe, T., Suzuki, J., Tsukada, H., and Isozaki, H. Online Large-Margin
Training for Statistical Machine Translation. In In Proceedings of EMNLP.
2007b.

Weaver, W. Translation. In Machine Translation of Languages. MIT Press,
Cambridge, MA, USA, 1949.

Weese, J. and Callison-Burch, C. Visualizing Data Structures in Parsing-Based
Machine Translation. In The Prague Bulletin of Mathematical Linguistics, 2010.

Wellington, B., Turian, J., and Melamed, D. Toward Purely Discriminative Training
for Tree-Structured Translation Models. In Learning Machine Translation. MIT
Press, Cambridge, MA, USA, 2009.

White, J., O’Connell, T., and O’Mara, F. The ARPA MT Evaluation Methodologies:
Evolution, Lessons, and Future Approaches. In Proceedings of AMTA. 1994.

Wick, M., Rohanimanesh, K., Bellare, K., Culotta, A., and McCallum, A. Sam-
pleRank: Training Factor Graphs with Atomic Gradients. In Proceedings of
ICML. 2011.

Williams, P., Sennrich, R., Post, M., and Koehn, P. Syntax-Based Statistical
Machine Translation. In Synthesis Lectures on Human Language Technologies,
2016.

WIPO. WIPO Patent Drafting Manual. 2014.

Wisniewski, G. and Yvon, F. Fast Large-Margin Learning for Statistical Machine
Translation. In Proceedings of CICLing. 2013.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian,
G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals,
O., Corrado, G., Hughes, M., and Dean, J. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation. In CoRR,
2016.

243

Bibliography

Wuebker, J., Green, S., and DeNero, J. Hierarchical Incremental Adaptation for
Statistical Machine Translation. In Proceedings of EMNLP. 2015a.

Wuebker, J., Green, S., DeNero, J., Hasan, S., and Luong, M.-T. Models and
Inference for Prefix-Constrained Machine Translation. In Proceedings of ACL.
2016.

Wuebker, J., Hwang, M.-Y., and Quirk, C. Leave-One-Out Phrase Model Training
for Large-Scale Deployment. In Proceedings of WMT. 2012.

Wuebker, J., Muehr, S., Lehnen, P., Peitz, S., and Ney, H. A Comparison of Update
Strategies for Large-Scale Maximum Expected BLEU Training. In Proceedings of
NAACL-HLT. 2015b.

Wäschle, K., Simianer, P., Bertoldi, N., Riezler, S., and Federico, M. Generative
and Discriminative Methods for Online Adaptation in SMT. In Proceedings of
MT Summit XIV. Nice, France, 2013.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. Listwise Approach to Learning
to Rank: Theory and Algorithm. In Proceedings of ICML. 2008.

Xiao, X., Liu, Y., Liu, Q., and Lin, S. Fast Generation of Translation Forest for
Large-Scale SMT Discriminative Training. In Proceedings of EMNLP. 2011.

Xu, J. and Li, H. AdaRank: A Boosting Algorithm for Information Retrieval. In
Proceedings of SIGIR. 2007.

Yan, R., Gao, M., Pavlick, E., and Callison-Burch, C. Are Two Heads Better
Than One? Crowdsourced Translation via a Two-Step Collaboration of Non-
Professional Translators and Editors. In Proceedings of ACL. 2014.

Yoo, A. B., Jette, M. A., and Grondona, M. Slurm: Simple Linux Utility for
Resource Management. In Workshop on Job Scheduling Strategies for Parallel
Processing. 2003.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How Transferable Are Features
in Deep Neural Networks? In Proceedings of NIPS. 2014.

Yu, H., Huang, L., Mi, H., and Zhao, K. Max-Violation Perceptron and Forced
Decoding for Scalable MT Training. In Proceedings of EMNLP. 2013.

Yuan, M. and Lin, Y. Model Selection and Estimation in Regression with Grouped
Variables. In Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 2006.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. A Support Vector Method for
Optimizing Average Precision. In Proceedings of SIGIR. 2007.

244

Bibliography

Zaretskaya, A., Vela, M., Corpas Pastor, G., and Seghiri, M. Measuring Post-
Editing Time and Effort for Different Types of Machine Translation Errors. In
New Voices in Translation Studies, 2016.

Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. In CoRR, 2012.

Zhang, D., Sun, L., and Li, W. A Structured Prediction Approach for Statistical
Machine Translation. In Proceedings of IJCNLP. 2008.

Zhang, H., Huang, L., Zhao, K., and McDonald, R. Online Learning for Inexact
Hypergraph Search. In Proceedings of EMNLP. 2013.

Zhang, M., Liu, Y., Luan, H., and Sun, M. Listwise Ranking Functions for
Statistical Machine Translation. In IEEE/ACM Transactions Audio, Speech and
Language Processing, 2016.

Zhao, K. and Huang, L. Minibatch and Parallelization for Online Large Margin
Structured Learning. In Proceedings of NAACL-HLT. 2013.

Zhao, K., Huang, L., Mi, H., and Ittycheriah, A. Hierarchical MT Training Using
Max-Violation Perceptron. In Proceedings of ACL (Short Papers). 2014.

Zhao, P., Rocha, G., and Yu, B. The Composite Absolute Penalties Family for
Grouped and Hierarchical Variable Selection. In The Annals of Statistics, 2009.

Zhechev, V. Machine Translation Infrastructure and Post-Editing Performance
at Autodesk. In Proceedings of the Workshop on Post-editing Technology and
Practice. 2012.

Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Parallelized Stochastic Gradient
Descent. In Proceedings of NIPS. 2010.

Zollmann, A. and Sima’an, K. A Consistent and Efficient Estimator for Data-
Oriented Parsing. In Journal of Automata, Languages and Combinatorics, 2005.

Zollmann, A. and Venugopal, A. Syntax Augmented Machine Translation via Chart
Parsing. In Proceedings of WMT. 2006.

245

	1 Introduction
	1.1 Preference Learning for Machine Translation
	1.2 Outline
	1.3 Research Contributions
	1.3.1 Previous Publications

	2 Background
	2.1 A Very Short History of MT & CAT
	2.2 Statistical Machine Translation
	2.2.1 Statistical Formulation of Translation
	2.2.2 Word-Based Models and Statistical Word Alignment
	2.2.3 Phrase-Based Model
	2.2.4 Digression: Language Modeling
	2.2.5 Hierarchical Phrase-Based Model
	2.2.6 Neural Machine Translation

	2.3 Evaluation of (Machine) Translation
	2.3.1 Human Evaluation
	2.3.2 Automatic Evaluation
	2.3.2.1 Edit Distance-Based Evaluation
	2.3.2.2 Precision-Based Evaluation
	2.3.2.3 Correlations with Human Judgments
	2.3.2.4 System Comparison & Significance Testing

	2.4 Linguistic Materials for Machine Translation
	2.4.1 Data Domains & Characteristics
	2.4.1.1 News-Style Text
	2.4.1.2 Patents
	2.4.1.3 Legal Texts
	2.4.1.4 Manuals
	2.4.1.5 Spoken Language

	2.5 Optimization in Machine Translation
	2.5.1 Digression: Discriminative Training in Statistical Machine Translation
	2.5.2 Direct Error Minimization
	2.5.2.1 Minimum Error Rate Training

	2.5.3 Structured Prediction
	2.5.3.1 Margin-Infused Relaxed Algorithm

	2.6 Preference Learning & Ranking
	2.6.1 Learning to Rank
	2.6.1.1 Formalization of Information Retrieval
	2.6.1.2 Ranking Measures
	2.6.1.3 Loss Functions and Learning

	3 Learning Preferences from Static Reference Translations
	3.1 Learning from Static References
	3.2 Learning to Rank for Statistical Machine Translation
	3.2.1 Pairwise Ranking for Statistical Machine Translation

	3.3 Baseline Algorithm
	3.4 Experimental Setup
	3.4.1 Data
	3.4.2 Machine Translation Systems

	3.5 Model Features
	3.5.1 Dense Feature Set
	3.5.2 Sparse Feature Set
	3.5.3 Experiments with Features

	3.6 Setups for Tuning Methods
	3.6.1 Minimum Error Rate Training
	3.6.2 Margin-infused Relaxed Algorithm
	3.6.3 Online Discriminative Training with Pairwise Ranking

	3.7 Experiments with Synthetic Data
	3.8 Gold-Standard
	3.9 Generating Training Data
	3.9.1 Evaluation

	3.10 Parallelization
	3.10.1 Feature Selection, Regularization & Multi-Task Learning
	3.10.1.1 Multi-Task Learning
	3.10.1.2 Asynchronous Parallelization

	3.10.2 Evaluation
	3.10.3 Perceptron Variants
	3.10.3.1 Evaluation

	3.11 Training on the Bitext
	3.11.1 Evaluation
	3.11.2 Efficient Implementation

	3.12 Further Experiments
	3.12.1 Comparison to Mira
	3.12.2 Multi-Task Learning by Regularization
	3.12.2.1 Experimental Setup
	3.12.2.2 Evaluation
	3.12.2.3 Japanese-to-English Patent Translation

	3.12.3 Spoken Language Translation
	3.12.3.1 German-to-English
	3.12.3.2 Russian-to-English
	3.12.3.3 English-to-Russian

	3.13 Experimental Summary

	4 Learning Preferences from Post-Edits
	4.1 Computer-Aided Translation
	4.2 Post-Editing
	4.3 Learning from Post-Edits
	4.4 Online Adaptation
	4.4.1 Online Learning Protocol
	4.4.2 Related Works
	4.4.3 Simulated Post-Editing

	4.5 Online Adaptation by Reranking
	4.5.1 Reranking
	4.5.1.1 Reranking with the Structured Perceptron

	4.6 Experiments
	4.6.1 IT Data
	4.6.2 Legal Data
	4.6.3 Patent Data
	4.6.4 Analysis
	4.6.4.1 Repetition Rate

	5 Learning Preferences from Human Interaction
	5.1 Interactive Machine Translation
	5.2 Immediate Adaptation from Post-Edits
	5.2.1 Graphical Post-Editing Interface for Immediate Adaptation
	5.2.2 Phrase Alignment for Hierarchical Derivations

	5.3 Adaptation
	5.3.1 Translation Model Adaptation from User Edits
	5.3.2 Parameter Adaptation
	5.3.3 Language Model Adaptation
	5.3.4 Adaptation Scheme

	5.4 Implementation of an Online Adaptive Post-Editing System
	5.4.1 Client Interface
	5.4.2 Logging
	5.4.3 Efficiency

	5.5 Evaluation in Computer-Aided Translation
	5.5.1 Measuring Speed
	5.5.2 Measuring Effort
	5.5.3 Measuring Quality

	5.6 User Studies
	5.6.1 User Studies in Computer-Aided Translation
	5.6.2 Studies on Adaptation
	5.6.3 Evaluation of User Studies

	5.7 User Study with the Graphical Interface
	5.7.1 Data Selection & Machine Translation Model
	5.7.2 Experimental Design
	5.7.3 Adaptation: Sanity Check
	5.7.4 Adaptation: Batch Analysis
	5.7.5 Adaptation: Case Study

	5.8 User Study with Neural Machine Translation
	5.8.1 Adaptation by Fine-Tuning
	5.8.2 Experimental Design
	5.8.2.1 Background Model

	5.8.3 Analysis

	6 Summary & Outlook

