Immediate Adaptation to User Corrections in Post-Editing SMT

<u>Patrick Simianer</u>, Sariya Karimova, Stefan Riezler Heidelberg University, Germany

Oct 28, 2016 iMT 2016 : AMTA 2016 Workshop on Interacting with Machine Translation

TOC

Motivation

2 Proposed approach

3 User study

Motivation

2 Proposed approach

3 User study

Motivation

User-adaptation in computer-aided translation (CAT) is crucial

- To overcome <u>domain shifts</u> between training data and translated materials
- 2 To prevent <u>frustrations</u> with translation technology, e.g. related to post-editing
- 3 To boost efficiency and (possibly) quality

WO 2007000372 A1

[title] Sheathed element glow plug

[abstract segment #1] A sheathed element glow plug (1) is to be placed inside a chamber (3) of an internal combustion engine.

[abstract segment #2] The sheathed element glow plug (1) comprises a heating body (2) that has a glow tube (6) connected to a housing (4).

:

WO 2007031371 A1

[title] Sheathed element glow plug

[abstract segment #1] A sheathed element glow plug (1) serves for arrangement in a chamber of an internal combustion engine.

[abstract segment #2] The sheathed element glow plug comprises a heating body (2) which has a glow tube (5) and a heating coil (8) which is arranged in the glow tube (5).

:

Motivation

- Translation memories naturally adapt to their users, this raises expectations
 - → But updating SMT-based CAT systems is not straight-forward
- Adaptation by re-training (overnight) is useful
 - → But it can't help during translation sessions, as it's a slow process
- Online adaptive SMT is well studied and there are even products¹ that implement it
 - → But most research is theoretical, user studies are scarce
 - → Adaptation is potentially inprecise due to automatic alignment methods

¹lilt.com, SDL Trados

Proposed approach

We present an approach to <u>online</u> user adaptive post-editing with precise, <u>immediate</u> adaptation:

- ⇒ By leveraging <u>user-generated alignments</u> for phrase-table adaptation
- ⇒ We evaluate our approach to adaptation in a user study

Definition of online adaptation

```
For each example t = 1, ..., |d|
```

- 1. Receive input sentence x_t
- 2. Output translation \hat{y}_t from current model
- 3. Receive user output y_t
- 4. Refine models on $(x, \hat{y}, y)_t$

Figure: Online learning procedure in computer-aided translation

Related work

W/o user study: Bertoldi et al. [2014]², Ortiz-Martínez et al. [2010]³, Wuebker et al. [2015b]⁴

W/ user study: Green et al. [2014]⁵, Denkowski [2015]⁶

Automatic alignment model: Bertoldi et al. [2014], Denkowski [2015], Ortiz-Martínez et al. [2010]

Tuning only: Green et al. [2014], Wuebker et al. [2015b]

²Online adaptation to post-edits for phrase-based statistical machine translation

³Online Learning for Interactive Statistical Machine Translation

⁴Hierarchical Incremental Adaptation for Statistical Machine Translation

⁵Human Effort and Machine Learnability in Computer Aided Translation

⁶Machine Translation for Human Translators

Related work – Evaluation

Quality

 Measure BLEU/TER of post-edits wrt. given reference translations (not necessarily meaningful)

Simulated quality

 Measure BLEU/TER of unaltered MT outputs wrt. given reference translations (identical to standard MT evaluation)

Manual effort

- Measure BLEU/TER of MT outputs wrt. post-edits [HTER]
- Measure and normalize counts of clicks and keystrokes

Simulated manual effort

- 1 Measure TER/BLEU wrt. offline created post-edits
- Use a model of user behavior to estimate number of clicks/keystrokes needed to produce reference translation from MT output

Related work – Evaluation

- Ortiz-Martínez et al. [2010]: Improved simulated quality and simulated manual effort compared to static systems
- Bertoldi et al. [2014]: Improved <u>simulated quality</u> compared to static systems
- Green et al. [2014]: Improved <u>simulated manual effort</u> compared to non-adapted system
- Wuebker et al. [2015b]: Improved <u>simulated quality</u> compared to baseline system
- Denkowski [2015]: Improved <u>simulated quality</u> and <u>manual effort</u> compared to static systems

Motivation

2 Proposed approach

3 User study

Example – MT output #1

Example – User correction #1

 $\bullet \ \ \text{sheathed element glow plug} \to \text{Gl\"{u}hkerze}$

Example – MT output #2

Example – User correction #2

Immediately learned translation rules:

- $a_0 \rightarrow eine$
- is to be placed_{2,3} $X_1 \rightarrow$ wird X_1 eingebaut
- a chamber₅ → eine Kammer
- of $a_{6.7} \rightarrow eines$
- combustion engine₈ → Verbrennungsmotors

Example – User correction #2

Derived translation rules:

- in a chamber → in eine Kammer
- of a combustion engine \rightarrow eines Verbrennungsmotors
- in a chamber of a combustion engine ⇒ in eine Kammer eines Verbrennungsmotors
- in a chamber of X_1 combustion engine \to in eine Kammer X_1 Verbrennungsmotors

į

Example – MT output #3

Example – MT output #4

Example - User correction #4

Approach – Weight updates

- Pairwise ranking updates to weigh many sparse features, e.g. rule ids
- Per coordinate learning rates used to prevent too harsh changes
- Default learning rate for id features of newly extracted rules is the overall median
- Leave-one-out: Derived translation rules are only added to subsequent grammars to prevent overfitting

Approach - Summary

- (User correction received)
- Extract immediate corrections from post-edit and alignment and add to current grammar
- 3 Re-translate input with new grammar to generate k-best list
- Pairwise ranking update using k-best
- 6 Add N-grams of post-edit to adaptive language model (following Denkowski et al. [2014])
- 6 Derive all possible rules from user correction

23/33

Motivation

2 Proposed approach

3 User study

User study - Setup

Subjects

19 students, 13 prospective translators, 6 CS students, 4 different mother tongues

Data

Titles and abstracts of patent documents, filtered by length, clustered by similarity

Environment

Controlled environment in a computer pool, 90 minute sessions

Machine translation

Hierarchical phrase-based system built from title/abstract training data, good baseline translation results

<u>Task</u>

Post-edit about 500 words from English into German, each task is shared by two subjects

User study – Results

response variable	estimated Δ	
HBLEU ₊₁	$+6.8 \pm 2.0 \ [\%]$	p < 0.001
HTER	-5.3 ± 1.9 [%]	p < 0.01
normalized time	-118 ms	

Table: Estimated differences in the response variables contrasting non-adaptive to adaptive systems. MT metrics calculated by comparing original MT outputs to user corrections.

Summary

- Novel graphical interface with (phrase-) alignments for a new form of interactive post-editing
- Alignment can be used for immediate and bulk adaptation of the translation model
- User study shows significant reductions in manual effort and slight speed improvement

Our code open source: https://github.com/pks/lfpe

Questions?

Thank you!

References I

- Nicola Bertoldi, Patrick Simianer, Mauro Cettolo, Katharina Wäschle, Marcello Federico, and Stefan Riezler. Online adaptation to post-edits for phrase-based statistical machine translation. *Machine Translation*, 28, 2014.
- M. Denkowski. *Machine Translation for Human Translators*. PhD thesis, Carnegie Mellon University, 2015.
- Michael Denkowski, Alon Lavie, Isabel Lacruz, and Chris Dyer. Real time adaptive machine translation for post-editing with cdec and transcenter. In *Proceedings of the EACL 2014 Workshop on Humans and Computer-assisted Translation*, 2014.
- Spence Green, Sida Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster, and Christopher D. Manning. Human effort and machine learnability in computer aided translation. In *Empirical Methods in Natural Language Processing*, 2014.

References II

- Benjamin Marie and Aurélien Max. Touch-based pre-post-editing of machine translation output. In *EMNLP*, 2015.
- Daniel Ortiz-Martínez, Ismael García-Varea, and Francisco Casacuberta. Online learning for interactive statistical machine translation. In *Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California, USA*, 2010.
- Katharina Wäschle and Stefan Riezler. Analyzing Parallelism and Domain Similarities in the MAREC Patent Corpus. Multidisciplinary Information Retrieval, 2012.
- Joern Wuebker, Spence Green, and John DeNero. Hierarchical incremental adaptation for statistical machine translation. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, 2015a.

References III

Joern Wuebker, Spence Green, and John DeNero. Hierarchical incremental adaptation for statistical machine translation. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, 2015b.