

Compact Personalized Models for Neural Machine Translation

Joern Wuebker, Patrick Simianer, John DeNero {joern,patrick,john}@lilt.com

Personalized interactive MT

• **interactive** MT:

Personalized interactive MT

- Personalized MT: Models are adapted towards each user
 - Batch adaptation: User uploads domain-relevant bilingual data
 - o **Online adaptation**: Model immediately learns from every translated sentence
- Strict latency constraints
 - Translations need to be generated at typing speed
- Large number of adapted models
 - One model per user
 - New user model after every translated sentence

Personalized MT: Inference process

- 1. **Load** User X's model from cache or persistent storage
- 2. **Apply** model parameters to computation graph
- 3. Perform inference

(1.) + (2.) ⇒ max. ~10M parameters for personalized model (**latency** constraints)

Full model: ~36M parameters

Solution: - Store personalized models as offsets from baseline model $W=W_b + W_u$

- Select sparse parameter subset W_{μ}

Experimental setup

- Down-sized self-attentive transformer network (Vaswani et al., 2017)
- 40k BPE tokens
- Adaptation: Fine tuning with SGD

Main experiments:

- German→English production system
- Here: Results are averages over four test sets (for individual scores see paper)
- Separate experiments for batch and online adaptation

Final experiments:

- Six different production systems: English ← French, English ← Russian, English ← Chinese
- Joint batch and online adaptation

Idea 1: Select specific network regions

Freezing Subnetworks to Analyze Domain Adaptation in Neural Machine Translation,
Thompson et al., WMT 2018

Idea 1: Select specific network regions

Idea 2: Select most relevant tensors on development set

Idea 2: Select most relevant tensors on dev

Idea 3: Group Lasso

Idea 3: Group Lasso

- Simultaneous regularization and tensor selection
- ullet Regularize offsets W_u , define each tensor as one group ${m g}$ for L1/L2 regularization

$$R_{\ell_{1,2}}(W_u) = \sum_{g \in W_u} \sqrt{|g|} \|g\|_2$$

- Total loss: $\mathcal{L} = \mathcal{L}_{seq}(W_b + W_u) + \lambda R_{\ell_{1,2}}(W_u)$
- Cut off all tensors ${\it g}$ with $\frac{1}{|g|} \sum_{w \in g} |w| < \theta$

Idea 3: Group Lasso

Final results (batch + online)

Conclusion

- Personalized interactive machine translation requires sparse adaptation
- Define adapted models by their parameter **offsets** to the baseline model
- Group lasso:
 - Regularize and select the parameter offsets
 - Quality similar to full model adaptation
 - Reduces number of adapted parameters by ~70%

We're hiring! (San Francisco & Berlin)

Joern Wuebker joern@lilt.com

